Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow

Author:

Xia Lijun1,McDaniel J. Michael1,Yago Tadayuki1,Doeden Andrea1,McEver Rodger P.1

Affiliation:

1. From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; Renaissance Women's Hospital of Edmond, Edmond, OK; and the Department of Biochemistry and Molecular Biology and Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK.

Abstract

AbstractMurine hematopoietic stem and progenitor cells (HSPCs) home to bone marrow in part by rolling on P-selectin and E-selectin expressed on endothelial cells. Human adult CD34+ cells, which are enriched in HSPCs, roll on endothelial selectins in bone marrow vessels of nonobese diabetic/severe combined immune deficiency (NOD/SCID) mice. Many human umbilical cord blood (CB) CD34+ cells do not roll in these vessels, in part because of an uncharacterized defect in binding to P-selectin. Selectin ligands must be α1-3 fucosylated to form glycan determinants such as sialyl Lewis x (sLex). We found that inadequate α1-3 fucosylation of CB CD34+ cells, particularly CD34+CD38–/low cells that are highly enriched in HSPCs, caused them to bind poorly to E-selectin as well as to P-selectin. Treatment of CB CD34+ cells with guanosine diphosphate (GDP) fucose and exogenous α1-3 fucosyltransferase VI increased cell-surface sLex determinants, augmented binding to fluid-phase P- and E-selectin, and improved cell rolling on P- and E-selectin under flow. Similar treatment of CB mononuclear cells enhanced engraftment of human hematopoietic cells in bone marrows of irradiated NOD/SCID mice. These observations suggest that α1-3 fucosylation of CB cells might be a simple and effective method to improve hematopoietic cell homing to and engraftment in bone marrows of patients receiving CB transplants.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3