GPI-anchor deficiency in myeloid cells causes impaired FcγR effector functions

Author:

Hazenbos Wouter L. W.1,Clausen Björn E.1,Takeda Junji1,Kinoshita Taroh1

Affiliation:

1. From the Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; the Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; and the Department of Social and Environmental Medicine, Osaka University Medical School, Osaka, Japan.

Abstract

AbstractSignaling by transmembrane immunoglobulin G (IgG)-Fc receptors (FcγRs) in response to ligand involves association with membrane microdomains that contain glycosyl phosphatidylinositol (GPI)-anchored proteins. Recent in vitro studies showed enhancement of FcγR signaling by forced monoclonal antibody-mediated cocrosslinking with various GPI-anchored proteins. Here, the possibility that GPI-anchored proteins are involved in normal physiologic FcγR effector functions in response to a model ligand was studied using myeloid-specific GPI-anchor-deficient mice, generated by Cre-loxP conditional targeting. GPI-anchor-deficient primary myeloid cells exhibited normal FcγR expression and binding or endocytosis of IgG-immune complexes (IgG-ICs). Strikingly, after stimulation with IgG-ICs, tumor necrosis factor-α release, dendritic cell maturation, and antigen presentation were strongly reduced by GPI-anchor deficiency. Tyrosine phosphorylation of the FcR γ-chain in response to IgG-IC was impaired in GPI-anchor-deficient cells. Myeloid GPI-anchor deficiency resulted in attenuated in vivo inflammatory processes during IgG-IC-mediated alveolitis. This study provides the first genetic evidence for an essential role of GPI-anchored proteins in physiologic FcγR effector functions in vitro and in vivo. (Blood. 2004;104:2825-2831)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3