Critical role for Syk in responses to vascular injury

Author:

Andre Patrick1,Morooka Toshifumi2,Sim Derek1,Abe Keith1,Lowell Clifford3,Nanda Nisha1,Delaney Suzanne1,Siu Gail1,Yan Yibing1,Hollenbach Stan1,Pandey Anjali1,Gao Huiyun2,Wang Yunmei2,Nakajima Kohsuke2,Parikh Sahil A.2,Shi Can2,Phillips David1,Owen Whyte4,Sinha Uma1,Simon Daniel I.2

Affiliation:

1. Portola Pharmaceuticals Inc, South San Francisco, CA;

2. Harrington-McLaughlin Heart & Vascular Institute, University Hospitals Case Medical Center, Case Cardiovascular Center, Case Western Reserve University School of Medicine, Cleveland, OH;

3. Department of Laboratory Medicine, University of California–San Francisco, San Francisco, CA; and

4. Department of Medicine, Mayo Clinic and Foundation for Education and Research, Rochester, MN

Abstract

AbstractAlthough current antiplatelet therapies provide potent antithrombotic effects, their efficacy is limited by a heightened risk of bleeding and failure to affect vascular remodeling after injury. New lines of research suggest that thrombosis and hemorrhage may be uncoupled at the interface of pathways controlling thrombosis and inflammation. Here, as one remarkable example, studies using a novel and highly selective pharmacologic inhibitor of the spleen tyrosine kinase Syk [PRT060318; 2-((1R,2S)-2-aminocyclohexylamino)-4-(m-tolylamino)pyrimidine-5-carboxamide] coupled with genetic experiments, demonstrate that Syk inhibition ameliorates both the acute and chronic responses to vascular injury without affecting hemostasis. Specifically, lack of Syk (murine radiation chimeras) attenuated shear-induced thrombus formation ex vivo, and PRT060318 strongly inhibited arterial thrombosis in vivo in multiple animal species while having minimal impact on bleeding. Furthermore, leukocyte-platelet–dependent responses to vascular injury, including inflammatory cell recruitment and neointima formation, were markedly inhibited by PRT060318. Thus, Syk controls acute and long-term responses to arterial vascular injury. The therapeutic potential of Syk may be exemplary of a new class of antiatherothrombotic agents that target the interface between thrombosis and inflammation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3