Tolerance induction by lentiviral gene therapy with a nonmyeloablative regimen

Author:

Mitsuhashi Noboru1,Fischer-Lougheed Jacqueline1,Shulkin Irina1,Kleihauer Annette1,Kohn Donald B.1,Weinberg Kenneth I.1,Starnes Vaughn A.1,Kearns-Jonker Mary1

Affiliation:

1. From the Division of Cardiothoracic Surgery, Department of Cardiothoracic Surgery, Transplantation Biology Research Laboratory, Children's Hospital Los Angeles and Keck School of Medicine; and the Division of Research Immunology and Bone Marrow Transplantation, Departments of Pediatrics, Molecular Microbiology, and Immunology, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA.

Abstract

AbstractAntibodies (Abs) directed at the Galα1,3Galβ1,4GlcNAc-R (αGal) carbohydrate epitope initiate xenograft rejection. Previously, we have shown that bone marrow transplantation (BMT) with lentivirus-mediated gene transfer of porcine α1,3 galactosyltransferase (GalT) is able to induce tolerance to αGal-expressing heart grafts following a lethal dose of irradiation. Here we show the first demonstration of permanent survival of αGal+ hearts following transplantation with autologous, lentivirus-transduced BM using a nonmyeloablative regimen. Autologous BM from GalT knockout (GalT–/–) mice was transduced with a lentiviral vector expressing porcine GalT and transplanted into sublethally irradiated (3 Gy) GalT–/– mice. Chimerism in the peripheral blood cells (PBCs) remained low but was higher in the BM, especially within the stromal cell population. Mice reconstituted with GalT did not produce anti-αGal Abs over time. We immunized these mice with αGal-expressing cells and assessed humoral immune responses. Anti-αGal xenoantibodies were not produced in mice reconstituted with GalT, but normal Ab responses to other xenoantigens were detected. Mice reconstituted with GalT accepted αGal+ heart grafts over 100 days. Transduction with lentiviral vectors results in chimerism at levels sufficient to induce long-term tolerance under nonmyeloablative conditions.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3