Rho GEF Lsc is required for normal polarization, migration, and adhesion of formyl-peptide–stimulated neutrophils

Author:

Francis Sanjeev A.1,Shen Xun1,Young Jeffrey B.1,Kaul Prashant1,Lerner Daniel J.1

Affiliation:

1. From the Department of Medicine, Weill Medical College of Cornell University, New York, NY.

Abstract

Neutrophil migration requires continuous reorganization of the cytoskeleton and cellular adhesion apparatus. Chemoattractants initiate intracellular signals that direct this reorganization. The signaling pathways that link chemoattractant receptors to the cytoskeleton and cellular adhesion apparatus are now being defined. Formyl-peptide chemoattractants released from bacteria stimulate G-protein–linked receptors on the surface of neutrophils and regulate the neutrophil cytoskeleton and adhesion apparatus through RhoA-dependent pathways. Lsc is a RhoA guanine nucleotide exchange factor that binds the heterotrimeric G-protein α-subunits, Gα12 and Gα13. We have disrupted the Lsc gene and demonstrated that formyl-peptide–stimulated Lsc knock-out (KO) neutrophils are unable to generate and sustain a single-dominant pseudopod and migrate with increased speed and reduced directionality. Unexpectedly, we also found that Lsc is required for normal β2- and β1-integrin–dependent neutrophil adhesion. Lsc-deficient mice have a peripheral leukocytosis and extramedullary hematopoiesis, demonstrating that Lsc is required for leukocyte homeostasis. Lsc-deficient neutrophils are recruited normally to sites of bacterial peritonitis and chemical dermatitis, indicating that other signaling pathways compensate for the Lsc deficiency in some forms of inflammation. These results demonstrate that Lsc links formyl-peptide receptors to RhoA signaling pathways that regulate polarization, migration, and adhesion in neutrophils and that Lsc is required for leukocyte homeostasis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3