Affiliation:
1. From the Department of Medicine, Weill Medical College of Cornell University, New York, NY.
Abstract
Neutrophil migration requires continuous reorganization of the cytoskeleton and cellular adhesion apparatus. Chemoattractants initiate intracellular signals that direct this reorganization. The signaling pathways that link chemoattractant receptors to the cytoskeleton and cellular adhesion apparatus are now being defined. Formyl-peptide chemoattractants released from bacteria stimulate G-protein–linked receptors on the surface of neutrophils and regulate the neutrophil cytoskeleton and adhesion apparatus through RhoA-dependent pathways. Lsc is a RhoA guanine nucleotide exchange factor that binds the heterotrimeric G-protein α-subunits, Gα12 and Gα13. We have disrupted the Lsc gene and demonstrated that formyl-peptide–stimulated Lsc knock-out (KO) neutrophils are unable to generate and sustain a single-dominant pseudopod and migrate with increased speed and reduced directionality. Unexpectedly, we also found that Lsc is required for normal β2- and β1-integrin–dependent neutrophil adhesion. Lsc-deficient mice have a peripheral leukocytosis and extramedullary hematopoiesis, demonstrating that Lsc is required for leukocyte homeostasis. Lsc-deficient neutrophils are recruited normally to sites of bacterial peritonitis and chemical dermatitis, indicating that other signaling pathways compensate for the Lsc deficiency in some forms of inflammation. These results demonstrate that Lsc links formyl-peptide receptors to RhoA signaling pathways that regulate polarization, migration, and adhesion in neutrophils and that Lsc is required for leukocyte homeostasis.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献