Integrin αvβ3 on human endothelial cells binds von Willebrand factor strings under fluid shear stress

Author:

Huang Jing1,Roth Robyn2,Heuser John E.2,Sadler J. Evan1

Affiliation:

1. Departments of Medicine, Biochemistry and Molecular Biophysics, and Howard Hughes Medical Institute, and

2. Department of Cell Biology, Washington University School of Medicine, St Louis, MO

Abstract

AbstractAcutely secreted von Willebrand factor (VWF) multimers adhere to endothelial cells, support platelet adhesion, and may induce microvascular thrombosis. Immunofluorescence microscopy of live human umbilical vein endothelial cells showed that VWF multimers rapidly formed strings several hundred micrometers long on the cell surface after stimulation with histamine. Unexpectedly, only a subset of VWF strings supported platelet binding, which depended on platelet glycoprotein Ib. Electron microscopy showed that VWF strings often consisted of bundles and networks of VWF multimers, and each string was tethered to the cell surface by a limited number of sites. Several approaches implicated P-selectin and integrin αvβ3 in anchoring VWF strings. An RGDS peptide or a function-blocking antibody to integrin αvβ3 reduced the number of VWF strings formed. In addition, integrin αv decorated the VWF strings by immunofluorescence microscopy. Furthermore, lentiviral transduction of shRNA against the αv subunit reduced the expression of cell-surface integrin αvβ3 and impaired the ability of endothelial cells to retain VWF strings. Soluble P-selectin reduced the number of platelet-decorated VWF strings in the absence of Ca2+ and Mg2+ but had no effect in the presence of these cations. These results indicate that VWF strings bind specifically to integrin αvβ3 on human endothelial cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3