Clonal analysis of hematopoietic progenitor cells in the zebrafish

Author:

Stachura David L.12,Svoboda Ondrej3,Lau Ryan P.12,Balla Keir M.12,Zon Leonard I.4,Bartunek Petr34,Traver David12

Affiliation:

1. Department of Cellular and Molecular Medicine and

2. Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA;

3. Institute of Molecular Genetics AS CR v.v.i., Prague, Czech Republic; and

4. Howard Hughes Medical Institute, Children's Hospital Boston, Boston, MA

Abstract

AbstractIdentification of hematopoietic progenitor cells in the zebrafish (Danio rerio) has been hindered by a lack of functional assays to gauge proliferative potential and differentiation capacity. To investigate the nature of myeloerythroid progenitor cells, we developed clonal methylcellulose assays by using recombinant zebrafish erythropoietin and granulocyte colony-stimulating factor. From adult whole kidney marrow, erythropoietin was required to support erythroid colony formation, and granulocyte colony-stimulating factor was required to support the formation of colonies containing neutrophils, monocytes, and macrophages. Myeloid and erythroid colonies showed distinct morphologies and were easily visualized and scored by their expression of lineage-specific fluorescent transgenes. Analysis of the gene-expression profiles after isolation of colonies marked by gata1:DsRed or mpx:eGFP transgenes confirmed our morphological erythroid and myeloid lineage designations, respectively. The majority of progenitor activity was contained within the precursor light scatter fraction, and more immature precursors were present within the lymphoid fraction. Finally, we performed kinetic analyses of progenitor activity after sublethal irradiation and demonstrated that recovery to preirradiation levels occurred by 14 days after irradiation. Together, these experiments provide the first report of clonal hematopoietic progenitor assays in the zebrafish and establish the number, characteristics, and kinetics of myeloerythroid progenitors during both steady-state and stress hematopoiesis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3