A genome-wide association study identifies a gene network of ADAMTS genes in the predisposition to pediatric stroke

Author:

Arning Astrid1,Hiersche Milan1,Witten Anika1,Kurlemann Gerhard2,Kurnik Karin3,Manner Daniela4,Stoll Monika1,Nowak-Göttl Ulrike4

Affiliation:

1. Leibniz-Institute for Arteriosclerosis Research at the University Muenster, Muenster, Germany;

2. Pediatric Neurology, University Children's Hospital Muenster, Muenster, Germany;

3. University Children's Hospital Munich, Munich, Germany; and

4. Thrombosis & Hemostasis Treatment Center, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany

Abstract

Abstract Pediatric stroke is a rare but highly penetrant disease with a strong genetic background. Although there are an increasing number of genome-wide association studies (GWASs) for stroke in adults, such studies for stroke of pediatric onset are lacking. Here we report the results of the first GWAS on pediatric stroke using a large cohort of 270 family-based trios. GWAS was performed using the Illumina 370 CNV single nucleotide polymorphisms array and analyzed using the transmission disequilibrium test as implemented in PLINK. An enrichment analysis was performed to identify additional true association signals among lower P value signals and searched for cumulatively associated genes within protein interaction data using dmGWAS. We observed clustering of association signals in 4 genes belonging to one family of metalloproteinases at high (ADAMTS12, P = 2.9 × 10−6; ADAMTS2, P = 8.0 × 10−6) and moderate (ADAMTS13, P = 9.3 × 10−4; ADAMTS17, P = 8.5 × 10−4) significance levels. Over-representation and gene-network analyses highlight the importance of the extracellular matrix in conjunction with members of the phosphoinositide and calcium signaling pathways in the susceptibility for pediatric stroke. Associated extracellular matrix components, such as ADAMTS proteins, in combination with misbalanced coagulation signals as unveiled by gene network analysis suggest a major role of postnatal vascular injury with subsequent thrombus formation as the leading cause of pediatric stroke.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3