Affiliation:
1. From the Oregon Health & Science University Cancer Institute, Portland, OR; Novartis Institutes for Biomedical Research, Novartis Pharma, Basel, Switzerland; and Howard Hughes Medical Institute, Chevy Chase, MD.
Abstract
AbstractImatinib has revolutionized drug therapy of chronic myeloid leukemia (CML). Preclinical studies were promising but the results of clinical trials by far exceeded expectations. Responses in chronic phase are unprecedented, with rates of complete cytogenetic response (CCR) of more than 40% in patients after failure of interferon-α (IFN) and more than 80% in newly diagnosed patients, a level of efficacy that led to regulatory approval in record time. While most of these responses are stable, resistance to treatment after an initial response is common in more advanced phases of the disease. Mutations in the kinase domain (KD) of BCR-ABL that impair imatinib binding have been identified as the leading cause of resistance. Patients with CCR who achieve a profound reduction of BCR-ABL mRNA have a very low risk of disease progression. However, residual disease usually remains detectable with reverse transcription–polymerase chain reaction (RT-PCR), indicating that disease eradication may pose a significant challenge. The mechanisms underlying the persistence of minimal residual disease are unknown. In this manuscript, we review the preclinical and clinical development of imatinib for the therapy of CML, resistance and strategies that may help to eliminate resistant or residual leukemia.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Reference168 articles.
1. Nowell P, Hungerford D. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132: 1497.
2. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243: 290-293.
3. Vardiman JW, Pierre R, Thiele J, et al. Chronic myeloproliferative diseases. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. Tumors of Haematopoietic and Lymphoid Tissues. Lyon: IARCPress; 2001: 15-59.
4. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247: 824-830.
5. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247: 1079-1082.
Cited by
1064 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献