Successful donor engraftment and repair of the blood-brain barrier in cerebral adrenoleukodystrophy

Author:

Orchard Paul J.1,Nascene David R.2,Miller Weston P.3,Gupta Ashish1ORCID,Kenney-Jung Dan4,Lund Troy C.1

Affiliation:

1. Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN;

2. Department of Diagnostic Radiology, University of Minnesota Medical Center, Minneapolis, MN;

3. Sagamo Therapeutics, Richmond, CA; and

4. Department of Neurology, University of Minnesota Medical Center, Minneapolis, MN

Abstract

Abstract Adrenoleukodystrophy (ALD) is caused by mutations within the X-linked ABCD1 gene, resulting in the inability to transport acylated very long chain fatty acids (VLCFAs) into the peroxisome for degradation. VLCFAs subsequently accumulate in tissues, including the central nervous system. Up to 40% of boys develop a severe progressive demyelinating form of ALD, cerebral ALD, resulting in regions of demyelination observed on brain magnetic resonance imaging that are associated with a “garland ring” of gadolinium contrast enhancement. Gadolinium enhancement indicates blood-brain barrier (BBB) disruption and an active inflammatory disease process. Only hematopoietic cell transplant (HCT) has been shown to halt neurologic progression, although the mechanism of disease arrest is unknown. We evaluated imaging- and transplant-related biomarkers in 66 males who underwent HCT. In 77% of patients, gadolinium contrast resolved by 60 days post-HCT. We determined that time to neutrophil recovery and extent of donor chimerism correlated significantly with time to contrast resolution post-HCT. Graft failure was associated with a significantly slower rate of contrast resolution (P < .0001). Time to neutrophil recovery remained significant in multivariate analysis with other biomarkers (P = .03). Our data suggest that robust donor myeloid recovery is necessary for timely repair of the BBB.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3