Aberrant V(D)J recombination is not required for rapid development of H2ax/p53-deficient thymic lymphomas with clonal translocations

Author:

Bassing Craig H.12,Ranganath Sheila1,Murphy Mike1,Savic Velibor2,Gleason Meagan1,Alt Frederick W.1

Affiliation:

1. Howard Hughes Medical Institute, The Children's Hospital, Center for Blood Research (CBR), Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA; and

2. Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, and the Abramson Family Cancer Research Institute, Philadelphia, PA

Abstract

Histone H2AX is required to maintain genomic stability in cells and to suppress malignant transformation of lymphocytes in mice. H2ax−/−p53−/− mice succumb predominantly to immature αβ T-cell lymphomas with translocations, deletions, and genomic amplifications that do not involve T-cell receptor (TCR). In addition, H2ax−/−p53−/− mice also develop at lower frequencies B and T lymphomas with antigen receptor locus translocations. V(D)J recombination is initiated through the programmed induction of DNA double-strand breaks (DSBs) by the RAG1/RAG2 endonuclease. Because promiscuous RAG1/RAG2 cutting outside of antigen receptor loci can promote genomic instability, H2ax−/−p53−/− T-lineage lymphomas might arise, at least in part, through erroneous V(D)J recombination. Here, we show that H2ax−/−p53−/−Rag2−/− mice exhibit a similar genetic predisposition as do H2ax−/−p53−/− mice to thymic lymphoma with translocations, deletions, and amplifications. We also found that H2ax−/−p53−/−Rag2−/− mice often develop thymic lymphomas with loss or deletion of the p53+ locus. Our data show that aberrant V(D)J recombination is not required for rapid onset of H2ax/p53-deficient thymic lymphomas with genomic instability and that H2ax deficiency predisposes p53−/−Rag2−/− thymocytes to transformation associated with p53 inactivation. Thus, H2AX is essential for suppressing the transformation of developing thymocytes arising from the aberrant repair of spontaneous DSBs.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3