Specific transgene expression in human and mouse CD4+cells using lentiviral vectors with regulatory sequences from theCD4 gene

Author:

Marodon Gilles1,Mouly Enguerran1,Blair Emma J.1,Frisen Charlotte1,Lemoine François M.1,Klatzmann David1

Affiliation:

1. From the Centre National de la Recherche Scientifique (CNRS) UMR-7087, Biologie et Thérapeutique des Pathologies Immunitaires, Centre d'Etude et de Recherche en Virologie et en Immunologie (CERVI), Hôpital La Pitié-Sâlpétrière, Paris, France.

Abstract

Achieving cell-specific expression of a therapeutic transgene by gene transfer vectors represents a major goal for gene therapy. To achieve specific expression of a transgene in CD4+ cells, we have generated lentiviral vectors expressing the enhanced green fluorescent protein (eGFP) reporter gene under the control of regulatory sequences derived from theCD4 gene—a minimal promoter and the proximal enhancer, with or without the silencer. Both lentiviral vectors could be produced at high titers (more than 107 infectious particles per milliliter) and were used to transduce healthy murine hematopoietic stem cells (HSCs). On reconstitution of RAG-2–deficient mice with transduced HSCs, the specific vectors were efficiently expressed in T cells, minimally expressed in B cells, and not expressed in immature cells of the bone marrow. Addition of the CD4gene-silencing element in the vector regulatory sequences led to further restriction of eGFP expression into CD4+ T cells in reconstituted mice and in ex vivo–transduced human T cells. Non–T CD4+ dendritic and macrophage cells derived from human CD34+ cells in vitro expressed the transgene of the specific vectors, albeit at lower levels than CD4+ T cells. Altogether, we have generated lentiviral vectors that allow specific targeting of transgene expression to CD4+ cells after differentiation of transduced mice HSCs and human mature T cells. Ultimately, these vectors may prove useful for in situ injections for in vivo gene therapy of HIV infection or genetic immunodeficiencies.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3