Hematopoietic NF-κB1 deficiency results in small atherosclerotic lesions with an inflammatory phenotype

Author:

Kanters Edwin1,Gijbels Marion J.J.1,van der Made Ingeborg1,Vergouwe Monique N.1,Heeringa Peter1,Kraal Georg1,Hofker Marten H.1,de Winther Menno P. J.1

Affiliation:

1. From the Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam; and the Departments of Molecular Genetics, Pathology, and Immunology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.

Abstract

AbstractAtherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-laden macrophages in the vessel wall. One of the major transcription factors in inflammation is nuclear factor κB (NF-κB), and we have studied its role in the development of atherosclerosis. Bone marrow from mice targeted in the NF-κB1 gene encoding for the p50 subunit was used to reconstitute irradiated LDLR-/- mice as a model for atherosclerosis. After feeding the mice a high-fat diet, those deficient in NF-κB1 had a 41% lower rate of atherosclerosis than control mice, as judged by the sizes of the lesions. Furthermore, in the absence of NF-κB1, the lesions were characterized by an inflammatory phenotype, contained increased numbers of small cells, and were almost devoid of normal foam cells. In vitro studies using bone marrow (BM)-derived macrophages showed that macrophages lacking p50 had a prolonged production of tumor necrosis factor (TNF) in response to lipopolysaccharide (LPS), and other cytokines were also affected. Interestingly, the uptake of oxidized low-density lipoprotein (LDL) was greatly reduced in activated p50-deficient macrophages, probably because of a reduction in the expression of scavenger receptor class A. The effects on atherosclerosis might have resulted from the changes in cytokine production and the uptake of modified lipoproteins, making p50 a pivotal regulator of atherogenesis. (Blood. 2004;103:934-940)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3