Influence of infused cell dose and HLA match on engraftment after double-unit cord blood allografts

Author:

Avery Sharon1,Shi Weiji2,Lubin Marissa1,Gonzales Anne Marie1,Heller Glenn2,Castro-Malaspina Hugo13,Giralt Sergio1,Kernan Nancy A.4,Scaradavou Andromachi4,Barker Juliet N.13

Affiliation:

1. Departments of Medicine, Adult Bone Marrow Transplantation Service and

2. Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY;

3. Weill Cornell Medical College, Cornell University, New York, NY; and

4. Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY

Abstract

Abstract The influence of cell dose and human leukocyte antigen (HLA) match on double-unit cord blood (CB) engraftment is not established. Therefore, we analyzed the impact of cell dose and high-resolution HLA match on neutrophil engraftment in 84 double-unit CB transplant recipients. The 94% sustained engraftment rate was accounted for by 1 unit in nearly all patients. Higher CD3+ cell doses (P = .04) and percentage of CD34+ cell viability (P = .008) were associated with unit dominance. After myeloablative conditioning, higher dominant unit total nucleated cell (TNC), CD34+ cell, and colony-forming unit doses were associated with higher sustained engraftment and faster neutrophil recovery (P = .07, P = .0008, and P < .0001, respectively). Total infused TNC (P = .0007) and CD3+ cell doses (P = .001) also significantly influenced engraftment. At high-resolution extensive donor-recipient HLA disparity was frequent, but had no influence on engraftment (P = .66), or unit dominance (P = .13). Although the unit-unit HLA match also did not affect sustained engraftment (P = 1.0), recipients of units closely (7-10 to 10-10) HLA-matched to each other were more likely to demonstrate initial engraftment of both units (P < .0001). Our findings have important implications for unit selection and provide further insight into double-unit biology.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3