Phosphorylation of threonine 154 in p40phox is an important physiological signal for activation of the neutrophil NADPH oxidase

Author:

Chessa Tamara A. M.1,Anderson Karen E.1,Hu Yanhua2,Xu Qingbo2,Rausch Oliver3,Stephens Len R.1,Hawkins Phillip T.1

Affiliation:

1. Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom;

2. Cardiovascular Division, Kings College London, London, United Kingdom; and

3. UCB Celltech, Cambridge, United Kingdom

Abstract

AbstractThe neutrophil nicotinamide adenine dinucleotide phosphate-oxidase is a multisubunit enzyme (comprising gp91phox, p22phox, p67phox, p40phox, p47phox, and Rac) that plays a vital role in microbial killing. The recent discovery of a chronic granulomatous disease patient who expresses a mutant p40phox subunit, together with the development of mouse models of p40phox function, indicate phosphatidylinositol 3-phosphate binding to the PX domain of p40phox is an important signal for oxidase activation. However, the presence of other conserved residues and domains in p40phox suggest further regulatory roles for this protein. To test this, we introduced wild-type and mutated versions of p40phox into fully differentiated mouse neutrophils by retroviral transduction of p40phox−/− bone marrow progenitors and repopulation of the bone marrow compartment in radiation chimaeras. Phosphorylation of p40phox on threonine 154, but not serine 315, was required for full oxidase activation in response to formylated bacterial peptide fMLP, serum-opsonized S aureus, and immunoglobulin-opsonized sheep red blood cells. A functional SH3 domain was not required for oxidase activation, and deletion of the entire domain resulted in enhanced oxidase responses. Phosphorylation of threonine 154 in response to S aureus was mediated by protein kinase Cδ and was required for full translocation of p47phox to phagosomes. These results define an important new element in the physiological activation of the oxidase.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3