Endothelial von Willebrand factor regulates angiogenesis

Author:

Starke Richard D.1,Ferraro Francesco2,Paschalaki Koralia E.3,Dryden Nicola H.1,McKinnon Thomas A. J.4,Sutton Rachel E.1,Payne Elspeth M.1,Haskard Dorian O.1,Hughes Alun D.5,Cutler Daniel F.2,Laffan Mike A.4,Randi Anna M.1

Affiliation:

1. Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London, United Kingdom;

2. Medical Research Council Laboratory of Molecular Cell Biology, Cell Biology Unit and Department of Cell and Developmental Biology, University College London, London, United Kingdom;

3. Airway Disease Department, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom;

4. Department of Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London, United Kingdom; and

5. International Centre for Circulatory Health, National Heart and Lung Institute, Faculty of Medicine, Imperial College London and Imperial College Healthcare National Health Service Trust, London, United Kingdom

Abstract

AbstractThe regulation of blood vessel formation is of fundamental importance to many physiological processes, and angiogenesis is a major area for novel therapeutic approaches to diseases from ischemia to cancer. A poorly understood clinical manifestation of pathological angiogenesis is angiodysplasia, vascular malformations that cause severe gastrointestinal bleeding. Angiodysplasia can be associated with von Willebrand disease (VWD), the most common bleeding disorder in man. VWD is caused by a defect or deficiency in von Willebrand factor (VWF), a glycoprotein essential for normal hemostasis that is involved in inflammation. We hypothesized that VWF regulates angiogenesis. Inhibition of VWF expression by short interfering RNA (siRNA) in endothelial cells (ECs) caused increased in vitro angiogenesis and increased vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2)–dependent proliferation and migration, coupled to decreased integrin αvβ3 levels and increased angiopoietin (Ang)–2 release. ECs expanded from blood-derived endothelial progenitor cells of VWD patients confirmed these results. Finally, 2 different approaches, in situ and in vivo, showed increased vascularization in VWF-deficient mice. We therefore identify a new function of VWF in ECs, which confirms VWF as a protein with multiple vascular roles and defines a novel link between hemostasis and angiogenesis. These results may have important consequences for the management of VWD, with potential therapeutic implications for vascular diseases.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 391 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3