Effective Targeting of PRAME-Positive Tumors with Bispecific T Cell-Engaging Receptor (TCER®) Molecules

Author:

Bunk Sebastian1,Hofmann Martin1,Unverdorben Felix1,Hutt Meike1,Pszolla Gabriele1,Schwöbel Frank1,Wagner Claudia2,Yousef Sara2,Schuster Heiko3,Missel Sarah4,Schoor Oliver5,Weinschenk Toni5,Singh-Jasuja Harpreet6,Maurer Dominik7,Reinhardt Carsten8

Affiliation:

1. Department TCR Engineering and Bispecifics, Immatics biotechnologies GmbH, Tuebingen, Germany

2. Department TCR Discovery and Validation, Immatics Biotechnologies GmbH, Tuebingen, Germany

3. Department Discovery, Immatics Biotechnologies GmbH, Tübingen, Germany

4. Department Translational Development, Immatics Biotechnology GmbH, Tuebingen, Germany

5. Department Discovery, Immatics Biotechnologies GmbH, Tuebingen, Germany

6. Immatics Biotechnology GmbH/ Immatics US Inc., Munich, Germany

7. Department Immunology, Immatics Biotechnologies GmbH, Tuebingen, Germany

8. immatics biotechnologies GmbH, Munich, Germany

Abstract

T cell receptors (TCRs) naturally recognize human leukocyte antigen (HLA)-bound peptides derived from foreign and endogenous proteins regardless of their extracellular or intracellular location. Preferentially expressed antigen in melanoma (PRAME) has been shown to be expressed at high levels in a variety of cancer cells while being absent or present only at very low levels in normal adult tissues except testis. In contrast to most other cancer/testis antigens, PRAME is expressed not only in solid tumors but also in leukemia and myeloma cells. Immunotherapy with bispecific T cell engagers has emerged as a novel and promising treatment modality for malignant diseases, however, antibody-based approaches (ie. blinatumomab) are restricted to few surface antigens such as CD19 or BCMA. Immatics has developed bispecific T cell-engaging receptors (TCER®) that are fusion proteins consisting of an affinity-maturated TCR and a humanized T cell-recruiting antibody with an effector function-silenced IgG1 Fc part. TCER® molecules confer extended half-life together with antibody-like stability and manufacturability characteristics. The molecular design allows for effective redirection of T cells towards target peptide-HLA selectively expressed in tumor tissues. Here we present proof-of-concept data from a TCER® program targeting a PRAME-derived peptide bound to HLA-A*02:01. We confirmed the abundant presence of the target peptide-HLA in several cancer indications and its absence in relevant human normal tissues by using the XPRESIDENT® target discovery engine, which combines quantitative mass spectrometry, transcriptomics and bioinformatics. Yeast surface display technology was used to maturate the stability and affinity of a parental human TCR recognizing PRAME with high functional avidity and specificity. During maturation we applied XPRESIDENT®-guided off-target toxicity screening, incorporating the world's largest normal tissue immunopeptidome database, to deselect cross-reactive candidate TCRs. The maturated TCRs were engineered into the TCER® scaffold and production in Chinese hamster ovary (CHO) cells generated highly stable molecules with low tendency for aggregation as confirmed during stress studies. Following TCR maturation, the TCER® molecules exhibited an up to 10,000-fold increased binding affinity towards PRAME when compared to the parental TCR. The high affinity correlated with potent in vitro anti-tumor activity requiring only low picomolar concentrations of TCER® molecules to induce half-maximal lysis of tumor cells expressing the target at physiological levels. Furthermore, using a tumor xenograft model in immunodeficient NOG mice, we could demonstrate significant growth inhibition of established tumors upon intravenous injection of TCER® molecules. Pharmacokinetic profiling in NOG mice determined a terminal half-life of more than 4 days, compatible with a once weekly dosing regimen in patients. For the safety assessment, we measured killing of more than 20 different human normal tissue cell types derived from high risk organs. Notably, we could confirm a favorable safety window for selected TCER® molecules, which induced killing of most normal tissue cells only at significantly higher concentrations than required for killing of tumor cells. To further support safety of TCER® molecules, we also performed a comprehensive characterization of potential off-target peptides selected from the XPRESIDENT® normal tissue database based on its high similarity to the sequence of the target peptide or based on data from alternative screening approaches. In summary, the efficacy, safety and manufacturability data to be presented provide preclinical proof-of-concept for a novel bispecific T cell-engaging receptor (TCER®) molecule targeting PRAME for treatment of various malignant diseases. Disclosures Bunk: Immatics: Employment. Hofmann:Immatics: Employment. Unverdorben:Immatics: Employment. Hutt:Immatics: Employment. Pszolla:Immatics: Employment. Schwöbel:Immatics: Employment. Wagner:Immatics: Employment. Yousef:Immatics: Employment. Schuster:Immatics: Employment. Missel:Immatics: Employment. Schoor:Immatics: Employment. Weinschenk:Immatics: Employment, Equity Ownership. Singh-Jasuja:Immatics: Employment, Equity Ownership. Maurer:Immatics: Employment. Reinhardt:Immatics: Employment, Equity Ownership.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3