Interleukin 7 worsens graft-versus-host disease

Author:

Sinha Manoj L.1,Fry Terry J.1,Fowler Daniel H.1,Miller Georgina1,Mackall Crystal L.1

Affiliation:

1. From the Pediatric Oncology Branch, Experimental Transplantation and Immunology Branch, National Cancer Institute, and Veterinary Resources Program, National Institutes of Health, Bethesda, MD.

Abstract

Impaired immune reconstitution has moved to the forefront of clinical problems limiting progress in allogeneic bone marrow transplantation (BMT). The identification of therapies that can enhance immune reconstitution by increasing thymopoiesis is critical to solving this problem. Interleukin 7 (IL-7) is the most potent thymopoietic cytokine identified thus far. To study the effects of IL-7 on immune reconstitution and graft-versus-host disease (GVHD) following allogeneic BMT, we administered recombinant human IL-7 (rhIL-7) in a murine parent into an F1 model. Results showed that rhIL-7 therapy lowered the “threshold” T-cell dose required to induce both clinical signs of GVHD as well as lethal GVHD. Histologic analysis of GVHD target tissues revealed that rhIL-7 increased the degree of inflammation and tissue damage observed at all T-cell doses studied, but did not change the pattern of organs affected or the histologic appearance of the GVHD within target organs. In addition, we evaluated the capacity for rhIL-7 to enhance thymopoiesis in the setting of allogeneic T cell–depleted (TCD) and T-cell–replete BMT. We observed that rhIL-7 therapy enhanced thymic function in TCD allogeneic BM transplant recipients, but not in animals that received even modest doses of T cells presumably due to thymic toxicity of the graft-versus-host reaction. Thus, caution must be exercised as IL-7 is developed clinically as an immunorestorative agent for use in the setting of allogeneic BMT. These results suggest that use of IL-7 should be limited to the setting of TCD BMT to obtain the greatest benefit on immune competence with the least toxicity.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3