The triterpenoid CDDO induces apoptosis in refractory CLL B cells

Author:

Pedersen Irene M.1,Kitada Shinichi1,Schimmer Aaron1,Kim Youngsoo1,Zapata Juan M.1,Charboneau Lula1,Rassenti Laura1,Andreeff Michael1,Bennett Frank1,Sporn Michael B.1,Liotta Lance D.1,Kipps Thomas J.1,Reed John C.1

Affiliation:

1. From The Burnham Institute and University of California–San Diego, La Jolla, CA; Tissue Proteomics Unit, National Cancer Institute, National Institutes of Health, Bethesda, MD; The University of Texas MD Anderson Cancer Center, Houston; ISIS Pharmaceuticals, Carlsbad, CA; and Dartmouth Medical School, Hanover, NH.

Abstract

Chronic lymphocytic leukemia (CLL) cells develop chemo-resistance over time. Most anticancer agents function through induction of apoptosis, and therefore resistance against these agents is likely to be caused by selection for CLL cells with defects in the particular apoptosis pathway that is triggered by these drugs. Anticancer agents that function through alternative apoptotic pathways might therefore be useful in treating chemo-resistant CLL. Triterpenoids represent a class of naturally occurring and synthetic compounds with demonstrated antitumor activity. We examined the effects of CDDO (triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid) on CLL B cells in vitro. CDDO induced apoptosis in a dose-dependent manner in all (n = 30) CLL samples tested, including previously untreated and chemo-resistant CLL specimens. CDDO induced rapid proteolytic processing of caspase-8, but not caspase-9, in CLL B cells, suggesting activation of a mitochondria-independent pathway. CDDO-induced apoptosis of CLL B cells was blocked by cytokine response modifier A (CrmA), a suppressor of caspase-8, but not by X-linked inhibitor of apoptosis protein–baculovirus IAP repeat–3 (XIAP-BIR3), a fragment of XIAP, which selectively inhibits caspase-9. Examination of CDDO effects on expression of several apoptosis-relevant genes demonstrated significant reductions in the levels of caspase-8 homolog Fas-ligand interleukin-1–converting enzyme (FLICE)–inhibitory protein (c-FLIP), an endogenous antagonist of caspase-8. However, reductions of FLIP achieved by FLIP antisense oligonucleotides were insufficient for triggering apoptosis, indicating that CDDO has other targets in CLL B cells besides FLIP. These data suggest that the synthetic triterpenoid CDDO should be further explored as a possible therapeutic agent for treatment of chemo-resistant CLL.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference44 articles.

1. Cancer statistics.;Parker;CA Cancer J Clin.,1997

2. Apoptosis-based therapies.;Reed;Nat Drug Disc.,2002

3. Apoptotic pathways: the roads to ruin.;Green;Cell.,1998

4. Caspases: intracellular signaling by proteolysis.;Salvesen;Cell.,1997

5. Mitochondrial control of cell death.;Kroemer;Nat Med.,2000

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3