Fractional attachment of CD47 (IAP) to the erythrocyte cytoskeleton and visual colocalization with Rh protein complexes

Author:

Dahl Kris Noel1,Westhoff Connie M.1,Discher Dennis E.1

Affiliation:

1. From the School of Engineering and Applied Science, Institute for Medicine and Engineering, and Department of Pathology and Laboratory Medicine, University of Pennsylvania, PA.

Abstract

AbstractInteractions of CD47 and RhAG and the Rh proteins are visualized between one another and with the cytoskeleton of intact erythrocytes. In a first study, CD47 is labeled with a phycoerythrin (PhE)– tagged antibody, which generates discrete spots that reflect induced clusters of CD47. Rh and RhAG colocalize with each other and to these induced clusters, whereas Band 3 and glycophorin C remain more homogeneously dispersed on the cell periphery. In a second study, red cells are aspirated into a micropipette, and immunofluorescent maps of the surface gradients that develop for CD47 and RhAG determine cytoskeletal connectivity. CD47 and RhAG gradients on normal red cells prove to be nearly identical and also appear intermediate to those found for the fluid bilayer and network-linked glycophorin C. Similar gradients are obtained for CD47 on Rhnull cells, suggesting that linkage of CD47 to the spectrin-actin skeleton is independent of Rh or RhAG and is not affected by CD47's reduced surface expression on these cells. The results show that CD47 colocalizes with Rh and RhAG but is fractionally attached to the red cell membrane skeleton independent of these and other major integral membrane proteins involved in cytoskeletal attachment. The results imply a homogeneous base distribution of CD47, restrained by cytoskeleton linkages, plus a smaller fraction of CD47, which is able to diffuse in the membrane.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3