Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV

Author:

Lee Sang-Kyung1,Dykxhoorn Derek M.1,Kumar Priti1,Ranjbar Shahin1,Song Erwei1,Maliszewski Laura E.1,François-Bongarçon Vanessa1,Goldfeld Anne1,Swamy N. Manjunath1,Lieberman Judy1,Shankar Premlata1

Affiliation:

1. From The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, MA.

Abstract

AbstractViral heterogeneity is a major hurdle for potential therapeutic use of RNA interference (RNAi) against HIV-1. To determine the extent of RNAi tolerance to mutations, we tested 3 viral target sites with differing propensity for mutations: a highly variable rev sequence, a gag sequence conserved only among clade B isolates, and a vif sequence highly conserved across clades. Lentiviral expression of all 3 shRNAs inhibited replication of the homologous HIVIIIB strain. However, they differed in their ability to protect primary CD4 T cells against multiple isolates within and across HIV clades. The least conserved rev sequence inhibited only 2 of 5 clade B isolates. The gag sequence (conserved within clade B) protected 5 of 5 clade B isolates but not other clade viruses with 2 or 3 mutations in the central region. In contrast, the vif sequence, which was conserved across clades except for single mutations at positions 14 and 17, inhibited viruses from 5 different clades. Moreover, siRNAs with introduced mutations at sites of gag sequence polymorphisms showed reduced antiviral activity, whereas mutations in vif siRNA only modestly decreased silencing. Thus, although 1 or 2 mutations at peripheral sites are tolerated, mutations in the central target cleavage region abolish RNAi activity.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3