Modifiers of von Willebrand factor identified by natural variation in inbred strains of mice

Author:

Shavit Jordan A.1,Manichaikul Ani2,Lemmerhirt Heidi L.3,Broman Karl W.2,Ginsburg David134

Affiliation:

1. Department of Pediatrics, University of Michigan, Ann Arbor;

2. Department of Biostatistics, Johns Hopkins University, Baltimore, MD;

3. Department of Human Genetics, and

4. Howard Hughes Medical Institute and Department of Internal Medicine, University of Michigan, Ann Arbor

Abstract

AbstractType 1 von Willebrand disease (VWD) is the most common inherited human bleeding disorder. However, diagnosis is complicated by incomplete penetrance and variable expressivity, as well as wide variation in von Willebrand factor (VWF) levels among the normal population. Previous work has exploited the highly variable plasma VWF levels among inbred strains of mice to identify 2 major regulators, Mvwf1 and Mvwf2 (modifier of VWF). Mvwf1 is a glycosyltransferase and Mvwf2 is a natural variant in Vwf that alters biosynthesis. We report the identification of an additional alteration at the Vwf locus (Mvwf5), as well as 2 loci unlinked to Vwf (Mvwf6-7) using a backcross approach with the inbred mouse strains WSB/EiJ and C57BL/6J. Through positional cloning, we show that Mvwf5 is a cis-regulatory variant that alters Vwf mRNA expression. A similar mechanism could potentially explain a significant percentage of human VWD cases, especially those with no detectable mutation in the VWF coding sequence. Mvwf6 displays conservation of synteny with potential VWF modifier loci identified in human pedigrees, suggesting that its ortholog may modify VWF in human populations.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disorders of Hemostasis and Thrombosis;Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics;2023

2. Characterization of the blood–brain barrier in genetically diverse laboratory mouse strains;Fluids and Barriers of the CNS;2021-07-28

3. Modifier genes: Moving from pathogenesis to therapy;Molecular Genetics and Metabolism;2017-09

4. Molecular characterization of exon 28 of von Willebrand's factor gene in Nigerian population;Nigerian Journal of Clinical Practice;2017

5. The C1 and C2 domains of blood coagulation factor VIII mediate its endocytosis by dendritic cells;Haematologica;2016-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3