Human Mesenchymal Stem Cells Attenuate Graft-Versus-Host Disease and Maintain Graft-Versus-Leukemia in Murine Allogeneic Bone Marrow Transplantation

Author:

Auletta Jeffery J1,Eid Saada2,Keller Matthew2,Metheny Leland3,Guardia-Wolff Rocio2,Lee Zhenghong4,Solchaga Luis A5,Cooke Kenneth R.6

Affiliation:

1. Pediatric Blood and Marrow Transplant Program, Rainbow Babies and Children's Hospital, Cleveland, OH, USA,

2. Pediatrics, Case Western Reserve University, Cleveland, OH, USA,

3. Medicine, Case Western Reserve University, Cleveland, OH, USA,

4. Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA,

5. Research & Development, Biomimetic Therapeutics, Franklin, TN, USA,

6. National Center for Regenerative Medicine, Cleveland, OH, USA

Abstract

Abstract Abstract 1907 Defining in vivo effects and biodistribution of human bone marrow-derived mesenchymal stem cell (hMSCs) following allogeneic bone marrow transplantation (alloBMT) could impact the clinical utility of MSC therapy for the prevention and treatment of graft-versus-host disease (GvHD). Using an established model of murine alloBMT, we defined hMSC effects on GvHD and graft-versus-leukemia (GvL) activity. We first studied whether hMSC could modulate in vitro murine T-cell (TC) alloreactivity in mixed leukocyte cultures (MLCs). Specifically, hMSCs added to MLCs significantly reduced TC proliferation in a concentration-dependent manner distinct from human fibroblasts. In contrast to MLC cultures alone, MLCs containing hMSCs had significant reduction in TNFα, IFNγ, and IL-10 levels and higher levels of PGE2 and TGFβ1. Modulation in the inflammatory milieu was associated with changes in TC phenotypes, including more naïve and less activated TC surface marker expression (CD62L+CD69−) and the induction of CD4+CD25+FoxP3+ T-regulatory cells. To determine whether hMSCs could modulate in vivo mTC alloreactivity, irradiated recipient B6D2F1 (H-2bxd) mice were transplanted with allogeneic C57BL/6 (H-2b) BM and purified splenic TCs (B6→B6D2F1) and then were tail-vein injected with hMSC infusions (1 million per injection) on days one and four post-transplant. Syngeneic transplant recipients (B6D2F1→B6D2F1) were used as controls. hMSC-treated alloBMT mice had significantly prolonged survival and improved clinical GvHD scores, reduced splenic TC expansion and TNFα and IFNγ-producing TCs, and lower circulating TNFα and IFNγ levels versus untreated alloBMT mice. Bioluminescence imaging showed redistribution of labeled hMSCs from the lungs to abdominal organs within 72 hours following infusion. Importantly, GvHD target tissues (small and large bowel and liver) harvested from hMSC-treated alloBMT mice had significantly lower GvHD pathology scores than untreated alloBMT mice. We next determined the effects of hMSCs on GvL activity using the murine mastocytoma cell line, P815 (H-2d). TCs co-cultured with hMSCs maintained potent in vitro cytotoxic T-lymphocyte (CTL) activity comparable to untreated control CTLs. After challenge with P815 tumor cells, hMSCs-treated alloBMT mice had less severe GvHD, eradication of tumor burden, and improved leukemia-free survival compared to alloBMT control mice. Lastly, indomethacin (IM) added to MLC-hMSC co-cultures significantly reversed attenuation in both murine TC alloreactivity and surface activation expression. In addition, IM administered to hMSC-treated alloBMT mice reversed hMSC-associated survival advantage, suggesting that PGE2 in part mediates hMSC immunomodulatory effects. Together, our results show that hMSC infusions effectively attenuate GvHD and maintain GvL potency in alloBMT mice and reveal potential biomarkers and mechanisms of action underlying hMSC effects. Disclosures: Solchaga: Bimemetic Therapeutics: Employment. Cooke:Amgen: Provides experimental drug and central pharmacy support for 2 trials for which I am Co-PI.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3