Role of the Hypoxic Bone Marrow Microenvironment in Multiple Myeloma Tumor Progression.

Author:

Asosingh Kewal12,De Raeve Hendrik32,de Ridder Mark42,Storme Guy A.42,Willems Angelo12,Van Riet Ivan12,Van Camp Benjamin12,Vanderkerken Karin12

Affiliation:

1. Hematology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium

2. (Intr. by Benjamin Van Camp)

3. Pathology, University of Antwerp, Antwerp, Belgium

4. Cancer Research Unit, Vrije Universiteit Brussel, Brussel, Belgium

Abstract

Abstract Recently we reported that pre-clinical myeloma disease progression in the 5T2MM mouse model is characterized by predominant CD45+ MM-cells in the early, pre-angiogenic stage stage of slow tumor progression, followed by expansion of CD45− MM-cells during the subsequent angiogenic stage of progressive tumor growth. Unlike other cancer cells, multiple myeloma (MM) cells have to survive and to grow in a microenvironment which is already hypoxic by nature. This hypoxic bone marrow (BM) microenvironment is essential for normal hematopoiesis. However, the role of BM hypoxia in myeloma tumor progression is not known. Herein we addressed this topic in the 5T2MM mouse model. Flow cytometric analysis of control mice and 5T2MM diseased mice injected with pimonidazole hypoxyprobe indicated that both normal BM and myeloma infiltrated BM are hypoxic. However, in myelomatous BM the hypoxia was significantly decreased. Analysis of HIF-1a expression, a surrogate marker of hypoxia, by flow cytometry also demonstrated significantly lower levels of hypoxia in myeloma infiltrated BM. HIF-1a expression was found in 5T2MM-cells and was significantly higher compared to the non-tumor cell fraction. In vitro culturing of 5T2MM cells under hypoxic conditions, indicated increased activation of apoptosis inducing caspase-3 in the CD45− MM-fraction, but not in the CD45+ 5T2MM-cells, suggesting that native BM hypoxia selects the tumor population for tumor initiating CD45+ 5T2MM-cells. Although angiogeneic switch and angiogeneic heterogeneity has been reported in MM, the role of myeloma associated angiogensis is remains unclear. The decreased hypoxia in myeloma infiltrated BM adds strength to the hypothesis that myeloma associated neovascularization is functional by increasing BM oxygenation. The data also suggest that the angiogenesis allows expansion of CD45− 5T2MM-cells by decreasing BM hypoxia. All together, these findings suggest an important role of BM hypoxia in myeloma tumor progression.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3