Telomere Length of Peripheral Blood Leukocytes Predicts Relapse and Clonal Evolution after Immunosuppressive Therapy in Severe Aplastic Anemia

Author:

Cooper James N1,Calado Rodrigo2,Wu Colin2,Scheinberg Phillip2,Young Neal2

Affiliation:

1. Clinical Research Training Program, National Institutes of Health, Bethesda, MD, USA

2. National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA

Abstract

Abstract Severe aplastic anemia (SAA) can be treated with either immunosuppressive therapy (IST) or hematopoietic stem cell transplantation (HSCT). Response to IST depends on control of the immune response and on a hematopoietic stem cell (HSC) compartment capable of repopulating the bone marrow after therapy. Telomeres are protective repetitive DNA sequences at the ends of chromosomes; telomeres shorten with each cell division due to DNA polymerase deficiency to fully duplicate telomeric ends. Cells with critically shortened telomeres undergo proliferative senescence, apoptosis, and genomic instability. Excessive shortening of telomeres has been proposed as a potential biomarker for HSC exhaustion, and loss-of-function mutations in telomerase genes cause excessive telomere erosion and associate with marrow failure. To test the hypothesis that telomere length is a predictor of successful outcome after IST in SAA, telomere length of peripheral blood leukocytes were measured by quantitative PCR and expressed as the relative ratio of telomere repeat copy number to single gene copy number (T/S ratio) in 168 consecutive patients prior to IST therapy. The cohort consisted of patients with SAA (mean age, 34 years; range, 4–82) enrolled in three sequential protocols at the National Institutes of Health from 2003 to 2008 (ClinicalTrials.gov identifiers, NCT00001964, NCT00260689, and NCT00061360); all patients received IST based on horse anti-thymoglobulin (h-ATG) plus cyclosporine (CsA). Additional treatments depended on specific protocol arm: mycophenolate mofetil (32 patients), rabbit-ATG in place of h-ATG (31 patients), or rapamycin (35 patients); 70 patients received h-ATG and CsA only. None of the patients had clinical findings suggestive of dyskeratosis congenita. All adult patients or legal guardians signed informed consent according to NHLBI Institutional Review Board. Response, relapse, and clonal evolution rates were similar across all regimens. Using both a univariate and multivariate Cox regression model, telomere length was not associated with response (partial or complete) to IST at 6 months. However, for patients who initially responded to therapy, telomere length as a continuous variable inversely correlated with relapse rate (P=0.01). When telomere length was treated as a categorical variable, patients with shorter telomeres (below the 50th percentile of telomere distribution) had 2.5 times higher probability to relapse in five years then did patients with longer telomeres (P=0.002). Since telomere length physiologically shortens with aging, patients were stratified as being either greater than or equal/less than fifty years old to address whether shortened telomeres were a surrogate marker of age. In patients over 50 only (n=54), short telomere length but not age predicted relapse (P =0.04) in a multivariate model including telomere length, age, and pre-treatment blood counts, indicating that telomere length associated with relapse independently of age. Approximately 10% of patients undergoing IST eventually develop secondary clonal evolution. In this cohort 11/168 patients developed cytogenetic abnormalities, myelodysplastic syndrome, or leukemia in 5 years, and telomere length inversely correlated with risk for clonal evolution (P=0.01). These results indicate that leukocytes’ telomere length predicts sustained response to IST, possibly serving as a biological marker for HSC reserve. While initial response to treatment results from reducing cytotoxic T-cells, patients with short telomeres may quickly reach a critical length threshold where further stem cell division is not possible. Patients in this cohort with the shortest telomeres also were at risk for developing clonal evolution.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3