Platelet Activation Gradients During Thrombus Formation

Author:

Stalker Timothy J.1

Affiliation:

1. School of Medicine, University of Pennsylvania, Philadelphia, PA

Abstract

The hemostatic response requires the tightly regulated interaction of the coagulation system, platelets, other blood cells and components of the vessel wall at a site of vascular injury. The dysregulation of this response may result in excessive bleeding if the response is impaired, and pathologic thrombosis with vessel occlusion and tissue ischemia if the response is overly robust. Extensive studies over the past decades have sought to unravel the regulatory mechanisms that coordinate the multiple biochemical and cellular responses in time and space to ensure that an optimal response to vascular damage is achieved. We and others have observed that platelet activation at a site of injury in vivo is heterogeneous, with a gradient of platelet activation extending from the site of injury. Platelets immediately adjacent to the injured vessel wall are densely packed and fully activated forming a stably adherent core region. This stable core is overlaid by a shell of less activated platelets that are more loosely packed. Genetic and pharmacologic studies have shown that the formation of these regions is dependent on partially overlapping gradients of distinct platelet agonists, with ADP serving as a mediator of platelet recruitment and retention in the shell region, and thrombin necessary for full platelet activation in the core region. The distribution of platelet agonists and other plasma solutes in time and space is in turn determined in part by their transport in the plasma microenvironments that evolve as platelets accumulate. Platelet mass consolidation and the subsequent narrowing of the gaps between platelets are important mechanisms by which plasma solutes are retained within the platelet mass to promote platelet activation. Consolidation also regulates the escape of plasma and platelet-derived bioactive molecules into the extravascular space. These studies and others examining how cellular, biochemical and physical factors are integrated to shape the optimal response to vascular injury in vivo will be discussed. Disclosures No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3