Affiliation:
1. From the Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin, Ireland, and Department of Oral Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom.
Abstract
AbstractNumerous studies have implicated bacteria in cardiovascular disease, but there is a paucity of information on the mechanism involved. In this study we show how the common oral bacteriumStreptococcus sanguis can directly interact with platelets, resulting in activation and aggregate formation. Platelet aggregation was dependent on glycoprotein IIb/IIIa (GPIIb/IIIa) and thromboxane. Platelets could also directly bind to S sanguis, but this interaction was not inhibited by GPIIb/IIIa antagonists. Antibodies to GPIb could inhibit both platelet aggregation and platelet adhesion to bacteria. This suggested a direct interaction between GPIb and S sanguis; however, this interaction did not require von Willebrand factor, the normal ligand for GPIb. By use of a range of monoclonal antibodies to GPIb and the enzyme mocharagin, which cleaves GPIb at amino acid 282, the interaction was localized to a region within the N-terminal 1-225 portion of GPIbα. Furthermore S sanguisfailed to induce aggregation of platelets from a patient with Bernard-Soulier disease, the organism bound to Chinese hamster ovary cells transfected with the GPIbα gene but did not bind to mock-transfected cells and biotin-labeled S sanguis cells bound to purified GPIb in ligand blots. It is suggested that the interaction between S sanguis and GPIb is important in the pathogenesis of infective endocarditis and may also play a contributory role in some cases of myocardial infarction.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献