Genome-Wide Analysis Uncovers Recurrent Alterations in Primary Central Nervous System Lymphomas

Author:

Braggio Esteban1,O'Neill Brian Patrick2,Egan Jan3,Valdez Riccardo4,McPhail Ellen5,Lopes Maria6,Schiff David7,Tibes Raoul8,Stewart Keith9,Fonseca Rafael10

Affiliation:

1. Division of Hematology - Oncology, Mayo Clinic Arizona, Scottsdale, AZ, USA,

2. Mayo Clinic, Rochester, MN, USA,

3. Comprehensive Cancer Center, Mayo Clinic, Scottsdale, AZ, USA,

4. Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA,

5. Anatomic Pathology & Hematology, Mayo Clinic, Rochester, MN, USA,

6. Pathology, University of Virginia, Charlottesville, USA,

7. Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, USA,

8. Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, USA,

9. Mayo Clinic Arizona, Scottsdale, AZ, USA,

10. Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA

Abstract

Abstract Abstract 420 Primary central nervous system lymphoma (PCNSL) is a rare and aggressive non-Hodgkin lymphoma that is confined to the CNS because of a poorly understood neurotropism. Most of PCNSL (90%) are part of the immune-privileged site-associated DLBCL (IPDLBCL). IPDLBCL consist in late–germinal center or post–germinal center lymphoid cells but that show very distinct characteristics that separate them from systemic DLBCL. It is still a matter of debate whether the PCNSL differ from nodal DLBCL with respect to molecular features and pathogenesis and also if there is a genomic signature specific of PCNSL. Only few genetic studies have been performed in PCNSL, partly due to the rarity of the tumors and the limited amount of available tissue. To gain insight into the genomic basis of PCNSL, we performed an integrated, high-throughput, genomic analysis in 17 immunocompetent, EBV- and HIV- cases. B-cell differentiation status was characterized by immunostains for CD10, MUM-1, and BCL-6. Either frozen samples or formalin fixed embedded paraffin sections from 17 PCNSL were studied by array-based comparative genomic hybridization (aCGH) using Sureprint G3 (1 million probes) array. Massively parallel whole-exome sequencing was performed in 4 of these cases. Additionally, 2 cases were analyzed by mate-pair whole genome sequencing searching for chromosomal breakpoints. Sanger DNA sequencing was used for validation. All cases were characterized by complex genomic aberrations with a median of 21 copy-number abnormalities (CNA, range 10–49), 4 structural abnormalities, 6 frameshift indels and 99 nonsynonymous exonic mutations. Focal deletion affecting CDKN2A (9p21) was the most common CNA, found in 14 of 17 cases (82%); with 6 of these cases (35%) having homozygous deletion. The second most frequent CNA involved the HLA genes (6p21), found in 11 of 17 (65%) cases; 4 of them (23%) with homozygous deletions. We identified recurrent CNA and mutations in several genes previously found in systemic DLBCL. Thus, PRDM1 (BLIMP1) was deleted or mutated in 47% of cases and the translocation IgH-BCL6 was found in 30% of PCNSL. Furthermore, recurrent mutations were found in NF-kB genes CD79B (75%, 3 of 4 cases analyzed), MYD88 (70%, 7 of 10), TNFAIP3 (50%, 2 of 4) and CARD11 (50%, 2 of 4). Additionally, recurrent abnormalities were found in B2M, BCL7A, CD58, CIITA, ETV6, GNA13, PAX5, TMEM30A and TP53. Nevertheless, we identified several recurrent genetic alterations not described in systemic DLBCL. TOX (a regulator of T-cell development) and TBL1XR1 (a negative regulator of the NF-kB and Wnt pathways) were either deleted or mutated in 30% of PNCSL, something not previously described in systemic DLBCL. Additionally, chromosomal breakpoints either in DLGAP1 or DLGAP2 (play a role in neuronal cell signaling) were found in 18% of PCNSL but not in systemic DLBCL. Moreover, mutations in ATM (master controller of cell cycle checkpoint), BAI3 (inhibitor of brain angiogenesis), BTG2 (cell cycle arrest), KDM6B (histone demethylase), PKC family members PRKCD/PRKCDE, genes from the histone cluster, the protocadherin family and the WD repeat domain were found in 10% to 50% of PCNSL. Pathway analysis including the most commonly affected genes in PCNSL showed an enrichment of networks associated with immune response, NF-kB pathway, proliferation, regulation of the apoptosis and lymphocyte differentiation and activation. In summary, we show evidence of a highly complex genome and identified a subset of genes with potential relevance in PCNSL pathogenesis. The genomic profile described here reinforces the existence of a specific molecular signature in PCNSL, thus helping to genetically differentiate this entity from the nodal DLBCL and related lymphomas. Disclosures: Stewart: Millenium: Consultancy, Honoraria, Research Funding; Onyx: Consultancy; Celgene: Consultancy. Fonseca:Medtronic: Consultancy; Otsuka: Consultancy; Celgene: Consultancy; Genzyme: Consultancy; BMS: Consultancy; Lilly: Consultancy; Onyx: Consultancy; Binding site: Consultancy; Millenium: Consultancy; AMGEN: Consultancy; Celgene : Research Funding; Onyx: Research Funding; prognostication of MM based on genetic categorization of the disease: Prognostication of MM based on genetic categorization of the disease Patents & Royalties.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3