A Clinical Test for the Identification of Amyloid Proteins in Biopsy Specimens by a Novel Method Based on Laser Microdissection and Mass Spectrometry.

Author:

Vrana Julie A.1,Gamez Jeffrey D.1,Theis Jason D.1,Plummer Timothy B.1,Bergen Robert H.2,Zeldenrust Steven R.3,Kurtin Paul J.1,Grogg Karen L.1,Dogan Ahmet1

Affiliation:

1. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA

2. Mayo Proteomics Research Center, Mayo Clinic, Rochester, MN, USA

3. Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA

Abstract

Abstract The management of systemic amyloidosis relies on the treatment of the underlying etiology and differs radically for different amyloid types. Therefore, given that at least 25 different proteins have been associated with amyloidosis, accurate identification of proteins deposited as amyloid fibrils is an important clinical problem. In this study, we describe a novel method that can characterize amyloid subtypes using laser microdissection (LMD) and mass spectrometry (MS) on routinely processed paraffin-embedded tissues. The study used 60 cases consisting of 16 transthyretin, 9 serum amyloid-associated protein, 20 immunoglobulin light chain lambda, 5 immunoglobulin light chain kappa, and 10 amyloid negative control samples. The biopsy specimens studied included heart, kidney, gastrointestinal tract, lung and decalcified bone marrow specimens. The amyloid type in all cases was previously characterized based on clinical findings, immunohistochemistry and, where indicated, by molecular testing for transthyretin mutations. Amyloid plaques were captured from an 10 micron paraffin section exhibiting positive Congo Red staining using LMD. Proteins were extracted, digested with trypsin and identified following MS/MS using the Mascot search algorithm analysis. MS correctly identified each of the 4 types of amyloidosis analyzed. Serum Amyloid P component and Apolipoprotein E were also identified as constituents of the amyloid deposition. The analysis was successful on all tissue types including decalcified bone marrow specimens and small biopsy specimens such as endomycardial biopsies and renal biopsies. The use of LMD from paraffin embedded biopsies and subsequent analysis by MS allows identification of the type of amyloid protein deposited with high specificity and sensitivity. This method promises to be a clinical test for accurate identification of amyloid proteins in routinely processed biopsy specimens and overcomes many of the specificity and sensitivity issues associated with current methods such as immunohistochemistry.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3