Inhibition of BET Recruitment to Chromatin As An Effective Treatment for MLL-Fusion Leukaemia

Author:

Dawson Mark A1,Prinjha Rab2,Dittman Antje3,Giotopoulos George4,Bantscheff Marcus3,Chan Wai-In4,Robson Samuel5,Chung Chun-wa6,Hopf Carsten3,Savitski Mikhail3,Döhner Konstanze7,Burnett Alan K8,Delwel Ruud9,Carola Huthmacher3,Gudgin Emma4,Lugo Dave2,Beinke Soren2,Soden Peter2,Auger Kurt R.10,Mirguet Olivier11,Jeffrey Phillip2,Drewes Gerard3,Lee Kevin2,Kouzarides Tony5,Huntly Brian J.P.4

Affiliation:

1. Haematology, Cambridge Institute For Medical Research, Cambridge, United Kingdom,

2. Epinova DPU, GlaxoSmithKline, Medicines Research Centre,

3. Cellzome AG,

4. Haematology, Cambridge Institute For Medical Research,

5. Gurdon Institute and Department of Pathology,

6. Molecular Discovery Research, GlaxoSmithKline, Medicines Research Centre,

7. Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany,

8. Cardiff University School of Medicine, Cardiff, United Kingdom,

9. Univ. Medical Ctr. Rotterdam Dept. of Hem., Room Ee1343", Erasmus MC, Rotterdam, Netherlands,

10. Cancer Epigenetics Oncology, GlaxoSmithKline,

11. Lipid Metabolism Discovery Performance Unit, GlaxoSmithKline

Abstract

Abstract Abstract 55 Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia, which confer a poor prognosis and are often refractory to conventional therapies. Recent efforts have begun to unravel the molecular pathogenesis of these malignancies. Several groups have demonstrated that MLL-fusions associate with two macromolecular chromatin complexes; the polymerase associated factor (PAFc) complex, which interacts with the N-terminal domain of MLL, a portion of the protein that is retained in all the described fusions, or the super elongation complex (SEC), via interaction with the C-terminal fusion partner. These complexes play an integral role in regulating transcriptional elongation and this function appears to be aberrantly co-opted by the MLL-fusions to initiate and perpetuate transcriptional programmes that culminate in leukaemia. In this study we used a systematic global proteomic survey incorporating quantitative mass spectrometry to demonstrate that MLL-fusions, as part of SEC and PAFc complexes, are associated with the BET family of acetyl lysine recognition chromatin “adaptor” proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia, via the displacement of the BET family of proteins from chromatin. Targeting the BET proteins to alter aberrant transcriptional elongation has recently been demonstrated to be possible using small molecule inhibitors that selectively bind the tandem bromodomain at the amino-terminus of the ubiquitously expressed BET proteins (BRD2/BRD3/BRD4). We developed a novel class of potent small molecule inhibitors to the BET family, which is chemically distinct to previously published BET-inhibitors. We then used this new compound (I-BET151) to demonstrate its profound and selective efficacy against human MLL-fusion leukaemic cell lines in liquid culture as well as clonogenic assays in methylcellulose. We also establish that primary murine progenitors retrovirally transformed with MLL-ENL and MLL-AF9 are equally susceptible to treatment with I-BET151. We show that the main phenotypic consequence of BET inhibition in MLL fusion leukaemia is a dramatic early induction of cell cycle arrest and apoptosis. Global gene-expression profiling, following I-BET151 treatment in two different human MLL-fusion leukaemia cell lines (expressing MLL-AF4 and MLL-AF9), highlights a common differentially expressed gene signature that accounts for this phenotype. Importantly, chromatin immunoprecipitation analyses at direct MLL target genes including BCL2, C-MYC and CDK6, indicate that I-BET151 selectively inhibits the recruitment of BET family members BRD3/BRD4, and SEC and PAFc components. These events result in the inefficient phosphorylation and release of paused POL-II from the TSS of these genes providing mechanistic insight into the mode of action of I-BET151 in MLL-fusion leukaemia. We subsequently established the therapeutic efficacy of I-BET151 in vivo by demonstrating dramatic disease control in murine models of MLL-AF4 and MLL-AF9 leukaemia. Finally, we also demonstrate that I-BET151 accelerates apoptosis in primary leukaemic cells from a large number of patients with various MLL-fusion leukaemias, by affecting a similar transcription programme to that identified in the human leukaemic cell lines. Importantly, we also demonstrate that I-BET151 significantly reduces the clonogenic potential of isolated primary leukaemic stem cells, suggesting that disease eradication may be possible. These data highlight a new paradigm for drug discovery targeting the protein-protein interactions of chromatin-associated proteins. We demonstrate that small molecules that perturb the interaction of BRD3/4 with chromatin have therapeutic potential in MLL fusion leukaemias and moreover, we provide the molecular mechanism to account for this therapeutic efficacy. Finally, our results emphasize an emerging role for targeting aberrant transcriptional elongation in oncogenesis. Disclosures: Prinjha: GSK: Employment. Chung:GSK: Employment. Lugo:GSK: Employment. Beinke:GSK: Employment. Soden:GSK: Employment. Mirguet:GSK: Employment. Jeffrey:GSK: Employment. Lee:GSK: Employment. Kouzarides:GSK: Consultancy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3