Histone Deacetylase Inhibitor SAHA Mediates Epigenetic Silencing of KIT D816V Mutated Systemic Mastocytosis Primary Mast Cells and Selective Apoptosis of Mutated Mast Cells

Author:

Abdulkadir Hani1,Grootens Jennine2,Kjellander Matilda1,Hellstrom Lindberg Eva3,Nilsson Gunnar2,Ungerstedt Johanna1

Affiliation:

1. Department of Medicine Huddinge, Karolinska Institutet, and Hematology Center, Karolinska University Hospital, Stockholm, Sweden, Stockholm, Sweden

2. Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden, Stockholm, Sweden

3. Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Sweden, Stockholm, Sweden

Abstract

Abstract Systemic mastocytosis (SM) is a myeloproliferative disease for which there is currently no specific therapy. Over 90% of the patients carry the D816V point mutation that renders the KIT receptor constitutively active. In the current study, we assessed the sensitivity of mast cell line HMC1.2 and primary SM patient mast cells to histone deacetylase inhibitors, and found that SAHA is most efficient. SAHA induced a rapid downregulation of KIT mRNA, with a subsequent reduction in total KIT protein as well as cell surface KIT. This was followed by major mast cell apoptosis. Primary SM patient mast cells cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas healthy subject mast cells were unaffected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive disease, with almost 100% cell death among mast cells from the mast cell leukemia patient. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/totalH3 decreased significantly in the KIT region, due to an increase in H3 density. This epigenetic silencing was specific to the KIT region and not seen in control genes upstream and downstream of KIT. Primary analysis of ChIP-seq data for histone marks H3K4me3 and H3K27me3, demonstrates a downregulation of transcription factors involved in activation of KIT receptor, such as MAPK, for the SAHA treated samples. This indicates an indirect epigenetic silencing of KIT. Our results therefore demonstrate that SAHA epigenetically silences KIT, and work is ongoing to elucidate the exact mechanisms of KIT regulation. Altogether, SAHA maybe a specific treatment for SM. Disclosures No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3