Novel Sites of Gamma Carboxylation in Human Factor VII

Author:

Wilkerson Emily M12,Bates Barbara3,Kumfer Kraig T3,Riley Nicholas M12,Schwartz Brad S345,Coon Joshua J124

Affiliation:

1. Genome Center of Wisconsin, University of Wisconsin, Madison, WI

2. Department of Chemistry, University of Wisconsin, Madison, WI

3. Morgridge Institute for Research, Madison, WI

4. Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI

5. Department of Medicine, University of Wisconsin, Madison, WI

Abstract

Abstract Introduction Gamma- (γ-) carboxylation of glutamate residues is a vitamin K-dependent post-translational modification critical to the function of several plasma proteins. Found in the N-terminal domains of specific proteins, most of which are involved in hemostasis, these γ-carboxyglutamate residues (Gla) help mediate binding of divalent cations and are essential to protein function. Coagulation factor VII(a) bears 10 known Gla residues as characterized by N-terminal sequencing, yet Thim et al.( Biochemistry 27:7785 1988) used amino acid analysis to quantify 11.0 mol of Gla/mol of protein for plasma-derived factor VII(a). We used mass spectrometry to map and validate Gla residues of coagulation factor VII(a) to potentially identify Gla residues outside of the Gla domain. Methods Four sources of factor VII(a) (2 plasma-derived and 2 recombinant) were extracted, digested, and analyzed by tandem mass spectrometry (LC-MS/MS). Each sample was digested with trypsin and chymotrypsin to provide orthogonal coverage. Peptides derived from factor VII(a) proteolysis were analyzed on a nanoLC coupled to a quadrupole-Orbitrap-quadrupole linear ion trap mass spectrometer (Orbitrap Fusion Lumos Thermo Scientific). Multiple fragmentation methods were used to map and validate the sites including collisional based dissociation (CAD), higher energy collisional activated dissociation (HCD), electron transfer dissociation (ETD), and electron-transfer/higher-energy electron transfer activation (EThcD). Tandem MS spectra were collected at resolution 30K at 200 m/z, and data were processed using MaxQuant, COMPASS, and Proteome Discoverer. All identified sites were validated through manual annotation of spectra. We estimate that any site with >1% occupancy will be identified as Gla with this method. To validate select sites of novel gamma carboxylation, synthetic peptides were made for 4 different sites that were consistently identified in factor VII(a) from all 4 sources. Synthetic peptides were analyzed using MS methods described above, generating "true positives" to match with peptides identified from the factor VII(a) sources. Spectra from the synthetic peptides and factor VII from each source were compared using manual spectral annotation. Results In addition to identifying known Gla residues at positions 6, 7, 19, 20, 29, and 35 of factor VII(a), we detected and validated 9 novel Gla residues outside of the N-terminal Gla domain. Novel sites include residues 94, 116, 132, 219, 215, 229, 265, 196 and 385. Four of these residues (210, 220, 296 and 385) were identified as Gla in all 4 sources of factor VII(a) and were validated with synthetic peptides using a combination of fragmentation methods, providing high confidence in their characterization. Published crystallographic data suggest that residues 210 and 220 of factor VIIa-tissue factor are closely approximated to a Ca2+ ion complexed to the C-terminal protease domain; this is not the case for residues 296 and 385. We continue to refine the technique to map the Gla residues (novel and known), and to quantify the fraction of factor VII(a) molecules from each source that contain the modification at each site, in order to better incorporate our data with established studies showing >90% occupancy at each of the 10 Gla domain sites. These data suggest there is room to expand our understanding of how carboxylation contributes to specific protein function, in order to provide more comprehensive understanding of this post-translational modification, and refine our understanding of hemostatic mechanisms. Disclosures No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3