Platelet Pitp-Alpha Promotes Thrombin Generation and the Dissemination of Tumor Metastasis, but Has Minimal Effect on Vascular Plug Formation

Author:

Zhao Liang1,Lian Lurong1,Suzuki Aae1,Stalker Timothy J.1,Min Sang H1,Krishnaswamy Sriram2,Durham Amy3,Abrams Charles S.1

Affiliation:

1. School of Medicine, University of Pennsylvania, Philadelphia, PA

2. The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA

3. School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA

Abstract

Abstract Phosphatidylinositol (PtdIns) is a relatively rare phospholipid in cell membranes. However, because of its unique ability to be transiently phosphorylated, it is critical for platelet signaling and vascular plug formation. Phosphatidylinositol transfer proteins (PITPs) facilitate the transfer of aqueous insoluble phosphatidylinositol in vitro from one cell membrane to another. Although murine platelets contain multiple PITP variants, PITPα is by far the most abundant isoform. Platelets are best known for their contribution to hemostasis, however, several lines of evidence indicate that they also contribute to tumor metastasis formation. To test the hypothesis that platelet phosphoinositide signaling contributes to tumor dissemination, we asked whether deletion of platelet PITPα impacts tumor metastasis formation by engineering PITPαfl/fl PF4Cre+ mice that lack PITPα only within their platelets and megakaryocytes. We found that loss of PITPα in platelets decreased PtdIns(4)P and PtdIns(4,5)P2 production by 30-40%. Even more striking was the 80% reduction in IP3 formation following thrombin-stimulation. However, we found no significant defect in the platelet ex vivo aggregation in response to typical doses of most of the platelet agonists, and only a small defect in response to low doses of thrombin. We investigated whether platelets lacking PITPα normally formed thrombi in vivo by using three well-established murine models. First, we observed an extremely minor (but statistically real) prolongation of the tail bleeding time in the PITPαfl/fl PF4Cre+ mice. Second, we found that mice lacking PITPα in their platelets had no defect in forming intravascular clots in response to a chemical induced carotid injury. Finally, we observed that thrombosis and platelet a-granule secretion in response to a laser-induced injury were completely normal in the knockout mice. Therefore, despite the biochemical defect in phosphoinositide signaling induced by the loss of PITPα, there was essentially no hemostastic defect. To determine whether PITPα-mediated phosphoinositide metabolism in platelets is required for tumor dissemination, we utilized a well-characterized B16F10 melanoma model of tumor metastasis. We observed that lung metastasis formation was reduced by 47%±18% in mice lacking PITPα in their platelets. We also found that during the first 3 hours after tumor injection, the control mice, but not the PITPαfl/fl PF4Cre+ mice, developed a rapid and transient thrombocytopenia. Histology analysis of the lung tissue at this time point revealed the presence of 30% more clots in the lung tissue of control mice. Further analysis showed that these thrombi were actually heterogenous complexes composed of tumor cells surrounded by platelets and fibrin. To understand why platelet PITPα influences tumor-induced fibrin formation, we investigated the ability of tumor cells to cause thrombin generation in platelet rich plasma derived from PITPαfl/fl PF4Cre+ and PITPαfl/fl PF4Cre- mice. We observed that the loss of PITPα in platelets resulted in an 88% reduction of thrombin generation compared to the controls. Furthermore, we found that PITPαfl/fl PF4Cre+ platelets also have impaired Annexin V binding suggesting that the defective fibrin formation seen in PITPαfl/fl PF4Cre+ mice is likely due to a role of PITPα in the exposure of phosphatidylserine on the platelet surface that is required for thrombin generation. Finally, we observed a mucosal immune response composed of NK-cells, T-cells, and neutrophils that was strikingly hyperplastic in mice lacking platelet PITPα at 48 hours after tumor injection, but was essentially absent in the control mice. Together, these findings demonstrate that PITPα-mediated phosphoinositide metabolism within platelets is not essential for platelet plug formation in vivo, but is required for the dissemination of tumors in vivo. Our work further demonstrates that platelet PITPα is required for tumor-induced phosphatidylserine exposure and thrombin generation. This process induces a shroud of platelets and fibrin that surround the surface of tumor cells, and thereby protects the tumors from elimination by the mucosal immune system. These results demonstrate that it is possible to clearly distinguish the platelet signaling processes required for platelet plug formation from those processes that augment metastasis formation. Disclosures No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3