Endothelial Activation by Sickle Mouse Red Cells and Their Endothelial Adhesion In Vivo is Abolished by Catalase Treatment of Sickle Cells, but Not Quiescent Endothelium, Implying a Role of Heme-Mediated Peroxide Generation in Sickle Cell Adhesion.

Author:

Kaul Dhananjay K.1,Suzuka Sandra M.2,Fabry Mary2

Affiliation:

1. Department of Medicine/Division of Hematology, Albert Einstein College of Medicine, Bronx, NY, USA,

2. Albert Einstein College of Medicine, Bronx, NY, USA

Abstract

Abstract Abstract 902 Multiple adhesion molecules, expressed on sickle red blood cells (SS RBCs) and activated endothelium, have been implicated in SS RBC adhesion to vascular endothelium. Moreover, intrinsic differences among heterogeneous SS RBC subpopulations, involving differences in red cell adhesion molecules and cell deformability, may contribute to their adhesive and obstructive properties and lead to postcapillary obstruction. However, the role of SS RBCs in endothelium activation and adhesion has not been evaluated despite the insightful studies of Hebbel and coworkers (JCI, 1982) demonstrating that SS RBCs generate excessive amounts of reactive oxygen species due to the presence of unstable hemoglobin S (HbS) and autoxidation of iron in heme. RBCs from transgenic-knockout sickle (BERK) mice similarly show a pronounced increase in heme degradation (Nagababu et. al. Blood Cells Mol Dis, 2008). We hypothesize that hypoxic conditions in venules (oxygen tension,∼30 mm Hg) will accelerate autoxidation of RBC membrane-bound HbS and release H2O2 that will be transferred to adjoining endothelium resulting in its activation (i.e., up-regulation of endothelial adhesion molecules) and SS RBC adhesion. To test the hypothesis that HbS-containing red cells from BERK mice will result in activation of quiescent endothelium in normal mice, we infused FITC (fluorescein isothiocynate)-labeled BERK red cells into congenic C57BL mice. BERK mice, expressing exclusively human βS- and α-globins, have been extensively backcrossed onto C57BL background. Intravital observations were made in the cremaster muscle microcirculatory bed. A single bolus of 150 μl of FITC-labeled BERK RBCs (Hct 30%) was infused into the recipient C57BL mouse via the jugular vein over a period of 5 min to avoid any shear related platelet aggregation. Infusion of FITC-labeled control (C57BL) mouse RBCs into C57BL recipient mice resulted in rare or no RBC adhesion, suggesting that there was no activating effect on endothelium. In contrast, infusion of BERK mouse RBCs into C57BL mice resulted in time-dependent increase in adhesion to venular endothelium. Adhesion became discernable after 3 minutes and showed a 3-5 fold increase after 5-min compared with the number of adherent RBCs at 3 min (P<0.01). Next, we investigated if the infusion of BERK mouse RBCs would induce increased endothelial oxidants. To this end, the cremaster preparation was suffused for 15 min with 123 dihydrorhodamine (DHR), a H2O2-sensitive probe (10 μl/L), followed by a bolus infusion of BERK mouse RBCs, and time-dependent changes in DHR fluorescence intensity were monitored in venules, the sites of adhesion. Infusion of BERK mouse RBCs, but not C57BL RBCs, resulted in time-dependent increase in the fluorescence intensity (ΔI) in venular endothelium, with almost 5-fold increase in DHR intensity after 5 min of BERK RBC infusion (P<0.001) compared with ΔI at 1 min. When infusion of catalase (900 U/mouse) into recipient C57BL mice was followed 30 min later by a bolus of FITC-labeled BERK mouse RBCs, BERK RBC adhesion and pronounced DHR fluorescence in endothelium were observed, demonstrating that intravascular infusion of catalase had little effect on oxidant generation by BERK mouse RBCs. In contrast, infusion of BERK RBCs pre-treated with catalase (100 U in 0.2 ml RBC suspension, 9-fold less catalase per mouse) to quench RBC generated H2O2 inhibited endothelial DHR fluorescence and BERK RBC adhesion. These results strongly suggest an obligatory role of heme-mediated peroxide generation by SS RBC in endothelial activation and SS RBC adhesion, and support the notion that heme-mediated oxidant generation may play a vital role in endothelial dysfunction in sickle cell disease. Disclosures: No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3