Acute Chest Syndrome In Transgenic Mouse Models of Sickle Cell Disease Triggered by Free Heme

Author:

Ghosh Samit1,Ofori-Acquah Solomon F1

Affiliation:

1. Division of Hematology/Oncology/BMT, Emory University, Atlanta, GA, USA

Abstract

Abstract Abstract 944 Acute chest syndrome (ACS) is the leading cause of death among patients with sickle cell disease (SCD). It is a process of devastating acute lung injury that evolves from multiple exacerbating events including vaso-occlusive pain crises, infection and fat emboli. ACS results in pulmonary infiltration, hypoxemia, and occlusions in the pulmonary microcirculation. Hitherto, experimental models of ACS have been lacking, and molecular targets of therapy remain to be identified. Clinical studies indicate that most patients diagnosed with ACS hemolyse during the acute phase of the syndrome, which highlights a role for circulating heme/hemin in this process. Since the deleterious effects of hemin are defined by increased vascular permeability, we tested the hypothesis that acute elevation of circulating hemin would increase pulmonary microvascular leakage sufficiently to trigger ACS. Adult transgenic mice expressing exclusively human sickle hemoglobin (Hb SS), and control Hb AS and Hb AA mice were intravenously injected with hemin (70 micromoles/kg body weight), and cardiopulmonary function assessed in real-time using a mouse pulse oximeter. Arterial oxygen saturation (SpO2) in the SS mice reduced significantly (p = 0.02) to 84.1 ± 5.6 % from a normal baseline value of 98.6 ± 0.3 %, within 25 minutes of administration of i.v. hemin, while SpO2 in control AS and AA mice remained unchanged. Consistent with changes in cardiopulmonary function, all the SS mice (n=14) succumbed to hemin, within 2 hours, while all control AS and AA mice survived, and remained alive several weeks after the experiment (log-rank survival test, p= <0.0001). We obtained identical results for survival in experiments using the Berkeley mouse model of SCD (Sickle 0/6, hemizygote 5/6, p=0.003). Post-mortem findings of gross pulmonary infiltration, alveolar flooding and microvascular occlusions, in the lungs of SS and Berkeley sickle mice that succumbed to hemin was consistent with respiratory distress associated sudden death. Younger SS mice aged 5–6 weeks were more resistant to i.v. hemin, with a survival rate of 80% (12/15), recapitulating the age-dependant mortality in human ACS. As expected, i.v. hemin raised the total plasma heme concentration to the same level in all mice, regardless of genotype. However, the concentration of protein-free plasma heme (PFPH) was increased by 6-fold in SS compared to AS mice (p = 0.001, n=12). The inability of SS mice to effectively scavenge excess free heme was likely because of very low plasma concentrations of hemopexin (SS: 0.17 ± 0.06 mg/ml, AS: 0.71 ± 0.14 mg/ml, p=0.002, n=8). We found a 10-fold higher concentration of heme oxygenase-1 (HO-1) in the plasma of SS mice, compared to AS mice (p=0.006, n=12), however, this enhanced capacity to degrade circulating heme, failed to protect the SS mice. This study demonstrates that acute elevation of plasma hemin triggers ACS in SCD mice. Infusion of hemopexin may prevent ACS during episodes of hemolytic crises in SCD. Disclosures: Ofori-Acquah: Emory University : Patents & Royalties.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3