Role of CXCL12-Expressing Bone Marrow Populations in Leukemic Stem Cell Regulation

Author:

Agarwal Puneet1,Li Hui1,Paterson Andrew J1,He Jianbo1,Nagasawa Takashi2,Bhatia Ravi1

Affiliation:

1. Division of Hematology/Oncology, University of Alabama Birmingham, Birmingham, AL

2. Department of Immunobiology and Hematology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan

Abstract

Abstract CXCL12 is the major chemoattractant for hematopoietic stem cells (HSC) in the bone marrow microenvironment (BMM), and plays a major role in HSC localization to their regulatory niches. Studies using genetic drivers/reporters have shown that CXCL12 deletion from perivascular mesenchymal stem cells (MSC) and CAR cells (using Prx1-Cre line) leads to loss of HSC quiescence, frequency and self-renewal potential, while deletion from endothelial cells (using Tek-Cre line) results in modest loss of HSC long-term repopulating activity. In contrast, deletion of CXCL12 from osteoprogenitors (using Osx-Cre line) resulted in HSC mobilization without any effect on HSC function, while deletion from mature osteoblasts (using OCN-Cre line) had no effect on HSC function (Greenbaum et al. Nature. 2013;495(7440):227-30; Ding et al. Nature. 2013;495(7440):231-5.). These studies have been useful in identifying MSC/CAR cells and endothelial cells as important HSC niche components but the BM niches for LSC remain poorly characterized. In the present study, we examined alterations in CXCL12-producing niche cells in the CML BMM, and their role in regulating LSC growth, using the SCL-tTA BCR-ABL mouse model of CML. Our previous studies indicated that CXCL12 levels are reduced in CML compared to normal BM (Zhang et al. Cancer Cell. 2012; 21(4):577). To evaluate the effect of leukemia development on specific CXCL12-expressing cell populations in the BMM, we crossed CXCL12GFP mice (GFP reporter knocked into the CXCL12 locus) with SCL-tTA-BCR-ABL mice to generate CXCL12GFP-SCL-tTA-BCR-ABL mice. CXCL12-expressing cells in the BM were identified by GFP expression. Mice developing CML after BCR-ABL induction by tet-withdrawal demonstrated significantly increased numbers of GFP+ endothelial cells (CD45-Ter119-CD31+) and reduced numbers of GFP+ BM stromal cells (CD45-Ter119-31-) compared to WT mice. Within the stromal population, the number of GFP+ MSC (PDGFRα+Sca-1+) were decreased. To evaluate the contribution of CXCL12-expressing populations towards LSC regulation, we crossed CXCL12f/f mice (loxP sites flanking exon 2) with Tek-Cre, Prx1-Cre, OCN-Cre and OSX-Cre transgenic lines. CML BM cells (CD45.1/2+; 2*106/mouse) were transplanted into lethally irradiated (8Gy) WT (CD45.2) Cre- or Cre+ CXCL12f/f knockout animals, and followed for CML development. When compared to WT mice, CXCL12f/f-Tek-Cre+ animals exhibited significantly reduced engraftment of CML cells (CD45.1/2+) in the BM, with associated reduction in CML myeloid cells (Gr-1+Mac-1+), MEP (CD16/32- CD34-), CMP (CD16/32lowCD34+), MPP (LSK+CD48+) and LTHSC (CD150+CD48-) numbers. No changes in splenic engraftment were seen. To evaluate long-term reconstitution, BM cells from primary transplanted WT or knockout animals were transplanted into lethally irradiated (8Gy) WT secondary recipients. CML engraftment in secondary mice receiving BM from Tek-Cre+ and WT animals was similiar at 12 weeks, indicating that residual LTHSC retained repopulating potential. In contrast, CXCL12f/f-OCN-Cre and CXCL12f/f-Osx-Cre mice did not demonstrate significant differences in total CML cell or CML LTHSC engraftment, but showed increased LMPP engraftment in the BM. Interestingly CXCL12f/f-Prx1-Cre+ animals exhibited significantly increased leukocytosis and BM cellularity, and increased MEP, CMP, LMPP, MPP, STHSC and LTHSC numbers in the BM compared to WT mice. Increased numbers of CML myeloid cells and LSK were seen in the peripheral blood, but no change in splenic engraftment was seen. CML engraftment in secondary mice receiving BM from Prx1-Cre+ animals was significantly increased at 12 weeks compared to WT animals, indicating that the expanded LTHSC population maintained repopulating potential. These results suggest that loss of endothelial cell expressed CXCL12 reduced CML LTHSC in BM, whereas loss of MSC/CAR cell expressed CXCL12 enhances CML LTHSC numbers in BM, in association with increased mobilization to PB. Collectively, these results reveal important and distinct niche functions for CXCL12 expressing BM endothelial cell and MSC/CAR cells in CML, and indicate significant differences in niche regulation of CML LSC compared with normal HSC. We expect that improved characterization of BM niches in CML will facilitate further dissection of key niche interactions underlying LSC maintenance and expansion. Disclosures No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3