Unicar: A Novel Modular Retargeting Platform Technology for CAR T Cells

Author:

Cartellieri Marc1,Loff Simon2,von Bonin Malte3,Bejestani Elham P.3,Ehninger Armin2,Feldmann Anja45,Koristka Stefanie56,Arndt Claudia564,Ehninger Gerhard3,Bachmann Michael P657

Affiliation:

1. Cellex Patient Treatment GmbH, Dresden, Germany

2. GEMoaB Monoclonals GmbH, Dresden, Germany

3. Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany

4. Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

5. Tumorimmunology, University Cancer Center (UCC), Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany

6. Institute of Radiopharmaceutical Cancer Research, HZDR Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

7. Center for Regenerative Therapies Dresden, Cluster of Excellence, Technical University Dresden, Dresden, Germany

Abstract

Abstract The adoptive transfer of T cells engineered with chimeric antigen receptors (CARs) is currently considered as a highly promising therapeutic option for treatment of otherwise incurable malignant diseases. CARs combine the cellular and humoral arm of the immune response by assembling a single-chain fragment variable (scFv) as binding moiety which provides the antigen-specificity and an activating immune receptor. It has been demonstrated both in vitro and in vivo, that CAR engrafted effector T cells mediate long-lasting anti-tumor responses. Despite encouraging clinical efficacy targeting CD19 in recent clinical trials, the appearance of potentially life-threatening adverse reactions and the lack of control mechanisms once initiated, prevent more widespread application of the CAR technology. To overcome limitations of conventional CAR T cells, a unique chimeric antigen receptor (UniCAR) technology was developed (Fig. 1) which allows precise control of CAR T cell reactivity, thus lowering the risk of side effects while preserving efficacy. Moreover, the UniCAR technology enables the retargeting of engrafted T cells against more than one antigen simultaneously or subsequently, thus reducing the risk for development of antigen-loss tumor variants under treatment. The UniCAR technology splits the signaling and antigen-binding aspects of conventional CAR into two individual components. T cells are engineered to express a universal CAR (UniCAR), which has specificity for a short peptide motif of 10 amino acids derived from a human nuclear protein. Thus, T cells engineered to express UniCAR remain inactivated after re-infusion, since the UniCAR target is not available for binding under physiological conditions. The ultimate antigen-specificity of the system is provided separately by targeting modules (TMs) comprising a binding domain e.g., a tumor-antigen specific scFv, fused to the nuclear antigen motif recognized by the UniCAR binding domain. Here we provide first in vitro and in vivo prove of concept for this new approach. Antigen-specific redirection of T cells armed with the universal CAR in the presence of different targeting modules against various antigens (CD33, CD123, CD19, CD20, PSCA, PSMA,) was effective at femtomolar concentrations of the targeting module both. Taken together, the modular nature of UniCAR technology will allow retargeting of autologous, patient-derived T cells to several antigens under controlled pharmacological conditions and has the potential to become a highly effective treatment option for late stage cancer patients with reduced risks for side effects. Figure 1. Schematic representation of T cell recruitment with the modular UniCAR system. The UniCAR T cell recruitment system consists of two separated units. The first unit is the UniCAR expressed on T cells with a single-chain fragment variable (scFv) specific for a short 10 aa long peptide motif. The intracellular signalling domain of the UniCAR contains a costimulatory domain derived from CD28 and the T cell receptor z chain. The second unit is a targeting molecule (TM) which consists of a scFv fused to the peptide epitope. The cross-linkage of T cell and target cell is mediated by interaction between the UniCAR binding domain on T cells and target cell binding TM. Figure 1. Schematic representation of T cell recruitment with the modular UniCAR system. / The UniCAR T cell recruitment system consists of two separated units. The first unit is the UniCAR expressed on T cells with a single-chain fragment variable (scFv) specific for a short 10 aa long peptide motif. The intracellular signalling domain of the UniCAR contains a costimulatory domain derived from CD28 and the T cell receptor z chain. The second unit is a targeting molecule (TM) which consists of a scFv fused to the peptide epitope. The cross-linkage of T cell and target cell is mediated by interaction between the UniCAR binding domain on T cells and target cell binding TM. Disclosures Cartellieri: Cellex Patient Treatment GmbH: Employment. Loff:GEMoaB Monoclonals GmbH: Employment. Ehninger:GEMoaB Monoclonals GmbH: Employment, Patents & Royalties: related to the UniTARG system. Ehninger:GEMoaB Monoclonals GmbH: Equity Ownership; Cellex Patient Treatment GmbH: Equity Ownership. Bachmann:GEMoaB Monoclonals GmbH: Equity Ownership, Patents & Royalties: related to the UniTARG system.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3