Proteasome Inhibitors Restore to Normal the Decreased Levels of Protein Expression and Nucleolar Localization of Various Mutant Ribosomal S19 Proteins Identified in DBA Patients.

Author:

Cretien Aurore1,Proust Alexis2,Gazda Hanna3,Meerpohl Jorg4,Niemeyer Charlotte Marie4,Delaunay Jean2,Tchernia Gil2,Narla Mohandas5,Da Costa Lydie1

Affiliation:

1. Unite 362, INSERM, Institut Gustave Roussy, Villejuif, France, Metropolitan

2. Centre de Reference des Maladies Genetiques de l’Erythrocyte et de l’Erythropoiese, Hopital Bicetre, Le Kremlin Bicetre, France, Metropolitan

3. Dana Farber Cancer Institute, Boston, USA

4. Universitats Kinderklinik, Freiburg, Germany

5. New York Blood Center, New York, NY, USA

Abstract

Abstract Mutations in ribosomal protein S19 (RPS19) gene have been found in 25% of patients affected with Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia. We have previously shown that several RPS19 mutant proteins (V15F, InsAG36, W33stop, Y48stop, R56stop, M75stop, R94stop, 274del31, InsG238, G127Q and L131P) exhibit decreased levels of protein expression and do not localize to the nucleolus like the wild type protein in transfected Cos-7 cells. In contrast, other mutants (W52C, T55M, R56Q, R62W, 24Del18, G120S) exhibit normal levels of protein expression and normal nucleolar localization. We hypothesized that decreased levels of expression of mutant proteins such as V15F, G127Q, and L131P may be due to proteosomal degradation. In order to validate our hypothesis, we analyzed the effects of two proteasome inhibitors (MG132 and lactacystin) on mutant RPS19 protein expression levels and their subcellular localization. Following treatment with proteosome inhibitors, the mutant proteins with missense mutations (V15F, G127Q and L131P) were expressed at levels similar to that of wild type protein and localized in the nucleolus. Similarly, proteasome inhibitors also restored the expression levels and normal subcellular localization to RPS19 with non-sense mutations (InsG238, R94stop, and 274del31) that resulted in the translation of RPS19 protein with at least 80 aminoacids. In marked contrast, proteosome inhibitors failed to restore the expression levels of RPS19 with the non-sense mutants that led to synthesis of shortened proteins (InsAG36, W33stop, Y48stop, R56stop, M75stop). Even in the presence of proteosome inhibitors we noted a dramatic decrease in the levels of expression of these mutant proteins and proteins expressed were localized in the cytoplasm. Our findings imply an important role for proteosomal degradation pathway in regulating the expression levels of RPS19. They further suggest that proteasome inhibitors could be considered as a potential treatment for some steroid resistant DBA affected individuals with specific RPS19 mutations.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3