Stimulation of neutrophil oxidative metabolism by the alternate pathway of complement activation: a mechanism for the spontaneous NBT test

Author:

Strauss RG,Mauer AM,Asbrock T,Spitzer RE,Stitzel AE

Abstract

Abstract The reduction of nitroblue tetrazolium dye by human neutrophils was measured in the presence of serum in which the complement system had been activated through the alternate pathway by interaction with inulin. Neutrophils incubated with serum inulin supernatants reduced the dye and showed a general increase in oxidative metabolism. The oxidation of glucose-1–14-C by supernatant prepared from selectively depleted sera indicated that the neutrophil-stimulating factor(s) was generated through the alternate pathway of complement activation. The possibility that inulun had been ingested as a particle was ruled out by light microscopy and radiolabeling studies. The failure of neutrophils stimulated by the serum-inulun supernatants to migrate after exposure to a chemotactic agent suggested that the site of neutrophil-complement interaction was on the cell membrane. It is concluded from these results that biologically active fragments generated through the alternative pathway of complement activation can stimulate neutrophil metabolism in the absence of phagocytosis. Interaction of such fragments with circulating neutrophils in vivo and the subsequent metabolic activation of these cells is one explanation for the spontaneous reduction of nitroblue tetrazolium dye in vitro by neutrophils from patients with certain infections and inflammatory disorders.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3