Defective DNA Synthesis in Human Megaloblastic Bone Marrow: Effects of Hydroxy-B12 5'-Deoxyadenosyl-B12 and Methyl-B12

Author:

Van Der Weyden Martin B.11,Cooper Mary11,Firkin Barry G.11

Affiliation:

1. Monash University Department of Medicine, Alfred Hospital, Melbourne, Victoria, Australia.

Abstract

Abstract In cobalamin deficiency, inadequate DNA-thymine synthesis appears to result from decreased conversion of N5-methyltetrahydrofolic acid to tetrahydrofolic acid (THF). The N5-methyl THF conversion catalyzed by N5-methyl THF-homocysteine methyltransferase requires a cobalamin coenzyme, presumed to be methylcobalamin (methyl-B12). In support of the above, in B12-deficient marrow cultures, methyl-B12 appears to be the most effective cobalamin form to correct defective DNA-thymine synthesis. This was measured by the ability of deoxyuridine to suppress tritiated thymidine incorporation into DNA. While methyl-B12 produced complete correction of defective DNA synthesis, 5'-deoxyadenosyl cobalamin (5'-deoxyadenosyl-B12), cyanocobalamin (cyano-B12), and hydroxycobalamin (hydroxy-B12) effected only partial correction. The methyl-B12-mediated correction was blocked by methotrexate (MTX). The effect of MTX, in turn, was reversed by THF. In folate-deficient marrows, the B12 analogues did not correct defective DNA-thymine synthesis. The differential effects of hydroxy-B12 and methyl-B12 in correcting defective DNA-thymine synthesis in B12-deficient marrows suggest that the complex mechanisms for N5-methyl THF-homocysteine methyltransferase activation in Escherichia coli may not predominate in human hemopoietic tissue. Since methyl-B12 is the main component of plasma cobalamins, the critical determinant for megaloblastic maturation in B12 deficiency may be the delivery rate of methyl-B12 to marrow cells and its direct activation of N5-methyl THF-homocysteine methyltransferase.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3