A new method for studying splenic reticuloendothelial dysfunction in sickle cell disease patients and its clinical application: a brief report

Author:

Casper JT,Koethe S,Rodey GE,Thatcher LG

Abstract

Abstract Differential interference contrast (DIC) microscopy (Nomarsky optics) readily demonstrates the formation of “pits” or crater-like depressions in red cell membranes of splenectomized individuals. Splenic reticuloendothelial dysfunction characteristic of many patients with sickle cell disease (SCD) can be demonstrated by technetium spleen scans, but this technique is expensive, requires injection of radioactive material into children, and is cumbersome to perform at regular intervals. However, pit formation in red cells, which also appears to reflect splenic dysfunction, can readily be quantitated in a finger-stick blood sample using DIC microscopy. In this study, the degree of red cell pitting was compared with results of technetium spleen scans and measurements of Howell-Jolly bodies in individuals with sickle cell disease. The average pitted cell percentage in the control population was 0.5% +/- 0.5 (range 0.0–2.6) and 30.5% +/- 13.9 in the SCD population (range 2.4-71.1) (less than 0.001). Of the individuals studied with SCD, 12 also had technetium (99mTc) sulfur colloid scans and measurements of Howell-Jolly bodies. The percentage of Howell-Jolly bodies was low and did not correlate well with the degree of splenic visualization. However, there was an excellent correlation between pit count and splenic dysfunction as measured by spleen scan. Determination of red cell pitting, therefore, appears to offer a simple means for clinical evaluation of splenic reticuloendothelial function in patients with SCD.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3