Correlation of drug-perturbed marrow cell growth kinetics and intracellular 1-B-D-arabinofuranosylcytosine metabolism with clinical response in adult acute myelogenous leukemia

Author:

Karp JE,Donehower RC,Dole GB,Burke PJ

Abstract

Abstract To define the relationship between leukemic cell growth, intracellular metabolism of 1-B-D-arabinofuranosylcytosine (ara-C), and the clinical response to timed sequential induction therapy with ara-C in adult acute myelogenous leukemia (AML), growth kinetic and biochemical pharmacologic determinants were examined in AML bone marrow populations. Leukemic blasts from 45 previously untreated patients obtained prior to therapy were cultured in vitro in autologous pretreatment serum (APS) and in serum containing drug-induced humoral stimulatory activity (HSA). Cell populations cultured in HSA demonstrated both increased proliferation, as measured by both [3H]dThd incorporation into DNA and [3H]dThd leukemic blast labeling index, and greater [3H] ara-C leukemic blast labeling index relative to cells maintained in APS. HSA-cultured marrow cells from the 31 patients who achieved complete remission with ara-C-containing therapy demonstrated enhanced intracellular formation of ara-C 5′-triphosphate over three hours and retention of this active form during one subsequent hour in drug-free medium relative to cells maintained in APS. In contrast, cells from the 14 nonresponsive patients demonstrated no such HSA- induced increases in intracellular ara-C metabolism. These studies of human AML marrow cells identify behavior patterns of ara-C activation and net metabolism in the kinetically perturbed, proliferative state that may discriminate clinical sensitivity from clinical resistance to ara-C-based timed sequential therapy. Sensitive AML populations behave similarly to normal hematopoietic cohorts, with direct linkage of HSA- perturbed growth and pharmacologic parameters, while refractory cells demonstrate uncoupling of these determinants in the growth-stimulated state. These in vitro measurements may further serve as a template for prediction of clinical outcome to timed sequential therapy with ara-C, where both pharmacologic and cytokinetic determinants of response are intrinsic to the success of the designed drug scheduling.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3