Surface membrane expression by human blood leukocytes and platelets of decay-accelerating factor, a regulatory protein of the complement system

Author:

Nicholson-Weller A,March JP,Rosen CE,Spicer DB,Austen KF

Abstract

Abstract The decay-accelerating factor (DAF), an integral membrane protein of approximately 75,000 mol wt that regulates the stability of the C3 convertases of the classical and alternative complement pathways, was initially isolated from normal erythrocyte stroma and used to prepare a polyclonal antiserum. Previously, anti-DAF antiserum has been used to immunoprecipitate DAF from surface-labeled normal erythrocytes and to document the deficiency of DAF on the surface of erythrocytes from patients with paroxysmal nocturnal hemoglobinuria, a condition in which erythrocytes express abnormal sensitivity to complement-mediated lysis. DAF has now been demonstrated by cytofluorography with anti-DAF F(ab')2 and fluoresceinated second antibody to be present on the surface of resting polymorphonuclear leukocytes (PMN), monocytes, lymphocytes, and platelets. Populations of PMN, monocytes, and platelets each exhibited a unimodal distribution of fluorescent staining, reflecting uniform cellular expression of DAF antigen, while the lymphocyte population had a skewed pattern of staining, indicating the heterogeneous expression of DAF antigen. For platelets, the shift in mean fluorescence channel observed with cytofluorographic analysis was minimal, but the presence of surface DAF on platelets was demonstrated by specific and saturable anti-DAF F(ab')2 binding. The DAF antigen, analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of dithiothreitol- reduced anti-DAF immunoprecipitates prepared from surface-labeled, isolated populations of cells, presented a single polypeptide chain of approximately 84,000 mol wt for PMN and 75,000 to 80,000 mol wt for monocytes, T and B lymphocytes, and platelets. Thus, the complement regulatory protein, DAF, is expressed on the surface of all major types of circulating blood cells from normal donors.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3