Tissue factor in microvesicles shed from U87MG human glioblastoma cells induces coagulation, platelet aggregation, and thrombogenesis

Author:

Bastida E,Ordinas A,Escolar G,Jamieson GA

Abstract

Abstract Microvesicles (diameter ca 200 nm) from the cell-free supernatant of U87MG human glioblastoma cell caused platelet aggregation and coagulation in a manner identical with that previously shown for the intact cells. Both activities were inhibited by dansylarginine -N-(3- ethyl-1,5-pentanediyl) amide (DAPA), confirming the thrombin-dependent nature of both activities. The specific activities per microgram of protein were 2–10 times greater in the microvesicles than in the plasma membrane fraction, suggesting localization in specific membrane domains. Sucrose density centrifugation gave a single protein peak (density 1.14) with congruent procoagulant and platelet aggregating activities. Both activities required the extrinsic pathway, as shown by studies with factor-deficient plasmas, and both were inhibited by heating (60 min/100 degrees C), by reduction and alkylation, and by incubation of the microvesicles with rabbit anti-bovine brain tissue factor antibody. These observations were confirmed using microvesicles from the HL-60 human promyelocytic leukemia cells, which are known to contain tissue factor activity. The results suggest that both procoagulant and proaggregating activities are causally related through the presence of tissue factor in the microvesicles. Studies with the Baumgartner perfusion apparatus showed that U87MG microvesicles increased the size of adherent thrombi nearly tenfold and that these thrombi were associated with nucleated cells from the blood. The increase in adherent thrombi did not occur if perfusion was carried out in the presence of DAPA, confirming the role of thrombin in their formation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3