Regulation of plasma factor XIII binding to fibrin in vitro

Author:

Greenberg CS,Dobson JV,Miraglia CC

Abstract

Abstract The binding of plasma factor XIII to fibrinogen or fibrin that has been chemically or enzymatically induced to polymerize was studied. Factor XIII binding was assayed using a 3H-putrescine incorporation assay and an 125I-plasma factor XIII binding assay. More than 80% of the native and radiolabeled plasma factor XIII was bound to fibrin I formed by reptilase in EDTA, citrate, or heparin anticoagulated plasma. Plasma factor XIII and 125I-factor XIII was bound (89.6% to 92.5%) to fibrin II formed by thrombin in either citrate or EDTA anticoagulated plasma. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of 125I-plasma factor XIII bound to fibrin I or fibrin II formed by reptilase or thrombin in the presence of EDTA demonstrated the b2- subunit remained bound to the a-chains or thrombin-cleaved a-chains. In the presence of calcium chloride and thrombin, the b2-subunit dissociated and factor XIIIa was bound. Protamine sulfate caused fibrinogen polymerization in the absence of divalent cations and reduced both plasma factor XIII and immunologic fibrinogen levels. Fibrinogen polymerized by protamine sulfate bound plasma factor XIII and the a2-subunit of 125I-platelet factor XIII. Plasma factor XIII was also bound to sonicated non-cross-linked fibrin II in either normal plasma or afibrinogenemic plasma. Plasma levels of several coagulation proteins were unchanged after the addition of reptilase, protamine sulfate, or sonicated fibrin to plasma. These results demonstrate that a specific binding site for the a2-subunit of plasma factor XIII is present on polymerized fibrinogen, fibrin I, and fibrin II. Furthermore, the presence of divalent cations, thrombin-cleavage of plasma factor XIII, and release of fibrinopeptides A or B are not required for plasma factor XIII binding to polymerized fibrinogen and fibrin.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3