Inhibition of neutrophil oxidative metabolism by lysosomotropic weak bases

Author:

Styrt B,Klempner MS

Abstract

Abstract Maintenance of an acidic intralysosomal compartment may be relevant to multiple aspects of neutrophil function. The effect of lysosomal alkalinization on the neutrophil respiratory burst was studied by measuring cytochrome c reduction in response to soluble stimuli in the presence of lysosomotropic weak bases. The weak bases chloroquine, ammonium chloride, methylamine, and clindamycin all raised the intralysosomal pH and inhibited neutrophil oxidative metabolism at concentrations ranging from 0.1 to 100 mmol/L. Inhibition was dose dependent for each base and correlated significantly with the degree of lysosomal alkalinization. Concentrations that did not alkalinize the lysosome did not inhibit the respiratory burst. Inhibition by weak bases was seen when oxidative metabolism was stimulated by phorbol myristate acetate, calcium ionophore A23187, formyl-methionyl-leucyl- phenylalanine, opsonized zymosan, or sodium fluoride. Increasing the stimulus concentration (from 5 ng/mL to 5 micrograms/mL phorbol myristate acetate and from 0.5 to 1 mumol/L A23187) diminished or abolished inhibition by weak bases. Washing the cells after incubation with bases and before stimulation substantially reversed the inhibition. None of the bases impaired detection of superoxide in a cell-free xanthine-xanthine oxidase assay. Other indexes of oxidative metabolism, including oxygen consumption and hydrogen peroxide release, were also inhibited by weak bases. Analysis of particulate NADPH oxidase activity from neutrophils stimulated in the presence of bases suggested that these cells assemble a subnormal amount of an enzyme complex with normal kinetic characteristics. Lysosomotropic weak bases alkalinized the neutrophil lysosome and produced inhibition of oxidative metabolism that was dose related, was not stimulus specific, and was largely reversed by washing the cells before stimulation. A possible explanation would be altered assembly of the enzyme complex involved in respiratory burst activation as a consequence of impaired granule/plasma membrane fusion in the presence of diminished transmembrane pH gradients.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3