Interaction of plasma lipoproteins with human platelets

Author:

Curtiss LK,Plow EF

Abstract

Abstract Human plasma low density lipoproteins (LDL) and high density lipoproteins (HDL) were radioiodinated and their interaction with washed human platelets was assessed. Both ligands were bound by the platelet at 37 degrees C, and an apparent equilibrium was attained within two hours. Minimal binding was observed at 22 degrees C or 4 degrees C. The specificity of these interactions was indicated by the observations that: (a) labeled and nonlabeled lipoproteins interacted with the platelet with the same apparent affinity; (b) nonlabeled lipoproteins inhibited binding, whereas unrelated plasma proteins did not; and (c) the platelet-bound ligands exhibited the appropriate apoprotein chain compositions when analyzed by polyacrylamide gel electrophoresis. Binding of HDL and LDL was found to be independent of the state of platelet activation and did not require divalent ions. Binding of HDL to the platelet was saturable, and a class of sites that maximally bound 1,585 +/- 390 HDL particles, with a dissociation constant of 3.1 X 10(-8) mol/L, was identified. Binding of LDL to the platelet was more complex, but evidence for a class of sites that bound 7,075 +/- 4,800 LDL particles, with a dissociation constant of 4 X 10(- 8) mol/L, was found. LDL was a poor inhibitor of 125I-HDL binding to the platelet, whereas HDL was an effective inhibitor of 125I-LDL binding. The capacity of HDL to bind or inhibit LDL binding was not dependent on its apoprotein E content. These results are most readily interpreted in terms of two types of lipoprotein interaction sites on platelets: (1) an HDL binding site that does not bind or interacts poorly with LDL, and (2) an LDL binding site that recognizes or is otherwise altered by HDL. The HDL site may be similar to the HDL receptor expressed by steroidogenic tissues in terms of apoprotein specificity. The LDL site is not the same as the LDL receptor of most extrahepatic cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3