Adhesion of platelets to human artery subendothelium: effect of factor VIII-von Willebrand factor of various multimeric composition

Author:

Sixma JJ,Sakariassen KS,Beeser-Visser NH,Ottenhof-Rovers M,Bolhuis PA

Abstract

Abstract The relationship between the multimeric size of factor VIII-von Willebrand factor (FVIII-vWF) and the support of platelet adhesion to subendothelium was studied in an annular perfusion chamber, employing human renal and umbilical arteries. Commercial factor VIII concentrates containing multimers of low molecular weight that had been shown not to correct the bleeding time upon infusion into patients with von Willebrand's disease did not support platelet adhesion in the perfusion chamber. Cryoprecipitate and two experimental FVIII-vWF concentrates containing multimers of high molecular weight supported platelet adhesion. Factor VIII-vWF purified from cryoprecipitate was subdivided into three fractions of different molecular weights (6.0–14.0, 4.0–9.0, and 3.0–7.5 X 10(6) dalton). These fractions appeared to bind equally well and to be equally effective in supporting platelet adhesion. Factor VIII-vWF with multimers of low molecular weight (0.5–1.5 X 10(6) dalton) were prepared by partial reduction. Binding of FVIII-vWF to subendothelium was not impaired, and the support of platelet adhesion appeared to be more resistant to the effect of reduction than the ristocetin cofactor activity. At high shear rate (2,500 sec-1), increased platelet adhesion was observed with partially reduced FVIII- vWF. These data indicate that the ability of FVIII-vWF preparations to correct the bleeding time is reflected in enhanced platelet adhesion to subendothelium in a perfusion chamber. These data also emphasize that multimeric size is not the only factor determining whether FVIII-vWF will support platelet adhesion.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3