Rigid membranes of Malayan ovalocytes: a likely genetic barrier against malaria

Author:

Mohandas N,Lie-Injo LE,Friedman M,Mak JW

Abstract

Abstract A high frequency of nonhemolytic hereditary ovalocytosis in Malayan aborigines is thought to result from reduced susceptibility of affected individuals to malaria. Indeed, Kidson et al. recently showed that ovalocytes from Melanesians in Papua New Guinea are resistant to infection in culture by the malarial parasite Plasmodium falciparum. In order to determine if protection against parasitic invasion in these ovalocytes might be the result of some altered membrane material property in these unusual cells, we measured their membrane and cellular deformability characteristics using an ektacytometer . Ovalocytic red cells were found to be much less deformable in comparison to normal discoid red cells. Similar measurements on isolated membrane preparations revealed a marked reduction in ovalocytic membrane deformability. To produce equal deformation of ovalocytic and normal membranes, ovalocytes required an 8–10-fold increase in applied shear stress, indicating that their membrane was capable of deforming under sufficient stress. To test the possibility that this increased membrane rigidity might confer resistance to parasitic invasion, we performed an in vitro invasion assay using Plasmodium falciparum merozoites and Malayan ovalocytes of varying deformability from seven different donors. The level of infection of the ovalocytes ranged from 1% to 35% of that in control cells, and the extent of inhibition appeared to be closely related to the reduction in membrane deformability. Moreover, we were able to induce similar resistance to parasitic invasion in nonovalocytic normal red cells by increasing their membrane rigidity with graded exposure to a protein crosslinking agent. Our findings suggest that resistance to parasite invasion of Malayan ovalocytes is the result of a genetic mutation that causes increased membrane rigidity.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3