Does the conformation of adsorbed fibrinogen dictate platelet interactions with artificial surfaces?

Author:

Lindon JN,McManama G,Kushner L,Merrill EW,Salzman EW

Abstract

Abstract Platelet activation by polymer surfaces is thought to require preliminary adsorption of fibrinogen and perhaps changes in fibrinogen conformation. We measured fibrinogen adsorption by a series of polymers by two methods, using either 125I-labeled fibrinogen or 125I-labeled antifibrinogen antibodies, and correlated the results with platelet reactivity (retention and secretion) in columns of beads coated with the polymers. For polyalkyl methacrylates with 1 to 4 carbon side chains, platelet reactivity varied directly with increasing length of the alkyl side chain and with the quantity of bound fibrinogen recognizable by antifibrinogen antibody but not with the total quantity of fibrinogen adsorbed. The same pattern of results was seen with five antibody preparations, including affinity-purified Fab fragments against the D or E domain of fibrinogen. Tests of platelet retention and fibrinogen binding to four polyalkyl acrylates and to three unrelated polymers (polystyrene, polymethyl methacrylate, and a polyether polyurethane) indicated that platelet retention correlated positively with both total fibrinogen binding and with the amount of antibody-recognizable fibrinogen bound. Drugs that block platelet aggregation, but not adhesion, did not alter the hierarchy of platelet retention to the polyalkyl methacrylates. These data suggest that, contrary to previous views, platelet adhesion to artificial surfaces increases with increasing surface coverage of adsorbed fibrinogen if the bound fibrinogen maintains a conformation such that its functional domains remain recognizable by antibody probes.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3